forked from sisl/MADRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrurltools.py
221 lines (195 loc) · 11.2 KB
/
rurltools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from __future__ import absolute_import, print_function
import json
import numpy as np
import tensorflow as tf
from gym import spaces
from rltools import log, util
from rltools.algos.policyopt import TRPO, SamplingPolicyOptimizer, ConcurrentPolicyOptimizer
from rltools.baselines.linear import LinearFeatureBaseline
from rltools.baselines.mlp import MLPBaseline
from rltools.baselines.zero import ZeroBaseline
from rltools.policy.categorical import CategoricalMLPPolicy, CategoricalGRUPolicy
from rltools.policy.gaussian import GaussianGRUPolicy, GaussianMLPPolicy
from rltools.samplers.parallel import ParallelSampler
from rltools.samplers.serial import DecSampler, SimpleSampler, ConcSampler
from runners import tonamedtuple
def rltools_envpolicy_parser(env, args):
if isinstance(args, dict):
args = tonamedtuple(args)
# XXX
# Should be handled in the environment?
# shape mucking is incorrect for image envs
if args.control == 'centralized':
obs_space = spaces.Box(low=env.agents[0].observation_space.low[0],
high=env.agents[0].observation_space.high[0],
shape=(env.agents[0].observation_space.shape[0] * len(env.agents),))
action_space = spaces.Box(low=env.agents[0].observation_space.low[0],
high=env.agents[0].observation_space.high[0],
shape=(env.agents[0].action_space.shape[0] * len(env.agents),))
else:
obs_space = env.agents[0].observation_space
action_space = env.agents[0].action_space
if args.recurrent:
if args.recurrent == 'gru':
if isinstance(action_space, spaces.Box):
if args.control == 'concurrent':
policies = [
GaussianGRUPolicy(env.agents[agid].observation_space,
env.agents[agid].action_space,
hidden_spec=args.policy_hidden_spec,
min_stdev=args.min_std, init_logstdev=0.,
enable_obsnorm=args.enable_obsnorm,
state_include_action=False,
varscope_name='policy_{}'.format(agid))
for agid in range(len(env.agents))
]
policy = GaussianGRUPolicy(obs_space, action_space,
hidden_spec=args.policy_hidden_spec,
min_stdev=args.min_std, init_logstdev=0.,
enable_obsnorm=args.enable_obsnorm,
state_include_action=False, varscope_name='policy')
elif isinstance(action_space, spaces.Discrete):
if args.control == 'concurrent':
policies = [
CategoricalGRUPolicy(env.agents[agid].observation_space,
env.agents[agid].action_space,
hidden_spec=args.policy_hidden_spec,
enable_obsnorm=args.enable_obsnorm,
state_include_action=False,
varscope_name='policy_{}'.format(agid))
for agid in range(len(env.agents))
]
policy = CategoricalGRUPolicy(obs_space, action_space,
hidden_spec=args.policy_hidden_spec,
enable_obsnorm=args.enable_obsnorm,
state_include_action=False, varscope_name='policy')
elif isinstance(action_space, spaces.Discrete):
raise NotImplementedError(args.recurrent)
else:
raise NotImplementedError()
else:
if isinstance(action_space, spaces.Box):
if args.control == 'concurrent':
policies = [
GaussianMLPPolicy(env.agents[agid].observation_space,
env.agents[agid].action_space,
hidden_spec=args.policy_hidden_spec, min_stdev=args.min_std,
init_logstdev=0., enable_obsnorm=args.enable_obsnorm,
varscope_name='{}_policy'.format(agid))
for agid in range(len(env.agents))
]
policy = GaussianMLPPolicy(obs_space, action_space, hidden_spec=args.policy_hidden_spec,
min_stdev=args.min_std, init_logstdev=0.,
enable_obsnorm=args.enable_obsnorm, varscope_name='policy')
elif isinstance(action_space, spaces.Discrete):
if args.control == 'concurrent':
policies = [
CategoricalMLPPolicy(env.agents[agid].observation_space,
env.agents[agid].action_space,
hidden_spec=args.policy_hidden_spec,
enable_obsnorm=args.enable_obsnorm,
varscope_name='policy_{}'.format(agid))
for agid in range(len(env.agents))
]
policy = CategoricalMLPPolicy(obs_space, action_space,
hidden_spec=args.policy_hidden_spec,
enable_obsnorm=args.enable_obsnorm,
varscope_name='policy')
else:
raise NotImplementedError()
if args.control == 'concurrent':
return env, policies, policy
else:
return env, None, policy
class RLToolsRunner(object):
def __init__(self, env, args):
self.args = args
env, policies, policy = rltools_envpolicy_parser(env, args)
if args.baseline_type == 'linear':
if args.control == 'concurrent':
baselines = [
LinearFeatureBaseline(env.agents[agid].observation_space,
enable_obsnorm=args.enable_obsnorm,
varscope_name='baseline_{}'.format(agid))
for agid in range(len(env.agents))
]
else:
baseline = LinearFeatureBaseline(policy.observation_space,
enable_obsnorm=args.enable_obsnorm,
varscope_name='baseline')
elif args.baseline_type == 'mlp':
if args.control == 'concurrent':
baselines = [
MLPBaseline(env.agents[agid].observation_space,
hidden_spec=args.baseline_hidden_spec,
enable_obsnorm=args.enable_obsnorm, enable_vnorm=args.enable_vnorm,
max_kl=args.vf_max_kl, damping=args.vf_cg_damping,
time_scale=1. / args.max_traj_len,
varscope_name='{}_baseline'.format(agid))
for agid in range(len(env.agents))
]
else:
baseline = MLPBaseline(policy.observation_space,
hidden_spec=args.baseline_hidden_spec,
enable_obsnorm=args.enable_obsnorm,
enable_vnorm=args.enable_vnorm, max_kl=args.vf_max_kl,
damping=args.vf_cg_damping,
time_scale=1. / args.max_traj_len, varscope_name='baseline')
elif args.baseline_type == 'zero':
if args.control == 'concurrent':
baselines = [
ZeroBaseline(env.agents[agid].observation_space)
for agid in range(len(env.agents))
]
else:
baseline = ZeroBaseline(policy.observation_space)
else:
raise NotImplementedError()
if args.sampler == 'simple':
if args.control == 'centralized':
sampler_cls = SimpleSampler
elif args.control == 'decentralized':
sampler_cls = DecSampler
elif args.control == 'concurrent':
sampler_cls = ConcSampler
else:
raise NotImplementedError()
sampler_args = dict(max_traj_len=args.max_traj_len, n_timesteps=args.n_timesteps,
n_timesteps_min=args.n_timesteps_min,
n_timesteps_max=args.n_timesteps_max,
timestep_rate=args.timestep_rate, adaptive=args.adaptive_batch,
enable_rewnorm=args.enable_rewnorm)
elif args.sampler == 'parallel':
sampler_cls = ParallelSampler
sampler_args = dict(max_traj_len=args.max_traj_len, n_timesteps=args.n_timesteps,
n_timesteps_min=args.n_timesteps_min,
n_timesteps_max=args.n_timesteps_max,
timestep_rate=args.timestep_rate, adaptive=args.adaptive_batch,
enable_rewnorm=args.enable_rewnorm, n_workers=args.sampler_workers,
mode=args.control, discard_extra=False)
else:
raise NotImplementedError()
step_func = TRPO(max_kl=args.max_kl)
if args.control == 'concurrent':
self.algo = ConcurrentPolicyOptimizer(env=env, policies=policies, baselines=baselines,
step_func=step_func, discount=args.discount,
gae_lambda=args.gae_lambda,
sampler_cls=sampler_cls,
sampler_args=sampler_args, n_iter=args.n_iter,
target_policy=policy,
interp_alpha=args.interp_alpha)
else:
self.algo = SamplingPolicyOptimizer(env=env, policy=policy, baseline=baseline,
step_func=step_func, discount=args.discount,
gae_lambda=args.gae_lambda, sampler_cls=sampler_cls,
sampler_args=sampler_args, n_iter=args.n_iter)
argstr = json.dumps(vars(args), separators=(',', ':'), indent=2)
util.header(argstr)
self.log_f = log.TrainingLog(args.log, [('args', argstr)], debug=args.debug)
def __call__(self):
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
summary_writer = tf.train.SummaryWriter(self.args.tblog, graph=sess.graph)
self.algo.train(sess, self.log_f, self.args.save_freq, blend_freq=self.args.blend_freq,
keep_kmax=self.args.keep_kmax,
blend_eval_trajs=self.args.blend_eval_trajs)