Skip to content

Latest commit

 

History

History
 
 

mol_dqn

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

MolDQN

This package contains libraries and scripts for reproducing the results described in Zhou Z, Kearnes S, Li L, Zare RN, Riley P. Optimization of Molecules via Deep Reinforcement Learning; http://arxiv.org/abs/1810.08678.

The main library functions, such as the MDP definition in chemgraph/mcts/molecules.py, are of primary interest.

Note that this implementation of the MDP has certain limitations, including (but not limited to):

  • No support for modification of aromatic bonds. This includes bonds that are perceived as aromatic during parsing of the initial state.
  • No support for multiple atom oxidation states. For example, it is not currently possible to generate CS(=O)C from an empty initial state, since the default oxidation state of sulfur is 2 and the MDP actions are based on the available valence without considering alternate oxidation states.

See the paper for additional details.

Here are the commands to produce the experimental results:

Prepare

Install the Contrib module of rdkit

git clone https://github.com/rdkit/rdkit
cp -R ./rdkit/Contrib/SA_Score ./chemgraph/dqn/py

Choose the output directory

export OUTPUT_DIR="./save"

Single Property Optimization

Optimization of QED

Naive DQN

python optimize_qed.py --model_dir=${OUTPUT_DIR} --hparams="./configs/naive_dqn.json"

Bootstrap DQN

Step 1
python optimize_qed.py --model_dir=${OUTPUT_DIR} --hparams="./configs/bootstrap_dqn_step1.json"
Step 2
python optimize_qed.py --model_dir=${OUTPUT_DIR} --hparams="./configs/bootstrap_dqn_step2.json"

Optimization of logP

Naive DQN

python optimize_logp.py --model_dir=${OUTPUT_DIR} --hparams="./configs/naive_dqn.json"

Bootstrap DQN

python optimize_logp.py --model_dir=${OUTPUT_DIR} --hparams="./configs/bootstrap_dqn_step1.json"

Constraint Optimization

Naive DQN

python optimize_logp_of_800_molecules.py --model_dir=${OUTPUT_DIR} --hparams="./configs/naive_dqn_opt_800.json" --similarity_constraint=0.0

Bootstrap DQN

python optimize_logp_of_800_molecules.py --model_dir=${OUTPUT_DIR} --hparams="./configs/bootstrap_dqn_opt_800.json" --similarity_constraint=0.0

Multi-objective Optimization

Bootstrap DQN

python multi_obj_opt.py --model_dir=${OUTPUT_DIR} --hparams="./configs/multi_obj_dqn.json" --start_molecule="CCN1c2ccccc2Cc3c(O)ncnc13" --target_molecule="CCN1c2ccccc2Cc3c(O)ncnc13" --similarity_weight=0.0

Single Property Targeting

Target SAS

python target_sas.py --model_dir="${OUTPUT_DIR}" --hparams="./configs/target_sas.json" --start_molecule="CCN1c2ccccc2Cc3c(O)ncnc13" --loss_type="l2" --target_sas=2.5