forked from kenji-imamura/recycle_bert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer_with_pretrained_bert.py
205 lines (172 loc) · 7.91 KB
/
transformer_with_pretrained_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# The original part of the fairseq: Copyright (c) Facebook, Inc. and its affiliates.
# The modified and additional parts:
# Copyright (c) 2019 National Institute of Information and Communications Technology.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from transformers import BertModel
from fairseq.models import (
register_model,
register_model_architecture,
FairseqEncoder,
)
from fairseq.models.transformer import (
TransformerModel,
EncoderOut,
base_architecture,
)
@register_model('transformer_with_pretrained_bert')
class TransformerWithBertModel(TransformerModel):
"""
Transformer model with the pretrained BERT encoder.
This class replaces the Transformer encoder with that of BERT.
See `"Recycling a Pre-trained BERT Encoder for Neural Machine
Translation" (Imamura and Sumita, 2019)
<https://www.aclweb.org/anthology/D19-5603/>`_.
Args:
encoder (TransformerEncoder): the encoder
decoder (TransformerDecoder): the decoder
The Transformer model provides the following named architectures and
command-line arguments:
.. argparse::
:ref: fairseq.models.transformer_parser
:prog:
"""
#def __init__(self, args, encoder, decoder):
# super().__init__(args, encoder, decoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
TransformerModel.add_args(parser)
# fmt: on
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
model = super().build_model(args, task)
model.fine_tuning = args.fine_tuning
return model
@classmethod
def build_encoder(cls, args, src_dict, embed_tokens):
return TransformerWithBertEncoder(args, src_dict, embed_tokens)
def train(self, mode=True):
if self.fine_tuning:
self.encoder.bert_model.train(mode)
self.decoder.train(mode)
else:
self.encoder.bert_model.eval()
self.decoder.train(mode)
def eval(self):
self.encoder.bert_model.eval()
self.decoder.eval()
class TransformerWithBertEncoder(FairseqEncoder):
"""
Transformer encoder acquired from the pretrained BERT encoder.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): encoding dictionary
embed_tokens (torch.nn.Embedding): input embedding
"""
def __init__(self, args, dictionary, embed_tokens):
super().__init__(dictionary)
self.register_buffer('version', torch.Tensor([3]))
self.padding_idx = embed_tokens.padding_idx
self.layer_wise_attention = getattr(args, 'layer_wise_attention', False)
self.fine_tuning = args.fine_tuning
self.bert_model = BertModel.from_pretrained(args.bert_model,
output_hidden_states=True)
def forward(self, src_tokens, src_lengths, cls_input=None, return_all_hiddens=False, **unused):
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (torch.LongTensor): lengths of each source sentence of
shape `(batch)`
return_all_hiddens (bool, optional): also return all of the
intermediate hidden states (default: False).
Returns:
namedtuple:
- **encoder_out** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_padding_mask** (ByteTensor): the positions of
padding elements of shape `(batch, src_len)`
- **encoder_embedding** (Tensor): the (scaled) embedding lookup
of shape `(batch, src_len, embed_dim)`
- **encoder_states** (List[Tensor]): all intermediate
hidden states of shape `(src_len, batch, embed_dim)`.
Only populated if *return_all_hiddens* is True.
"""
if self.layer_wise_attention:
return_all_hiddens = True
x = None
if not self.fine_tuning:
with torch.no_grad():
encoder_padding_mask = src_tokens.eq(self.padding_idx)
attention_mask = src_tokens.ne(self.padding_idx).long()
x, _, layer_outputs = self.bert_model(input_ids=src_tokens,
attention_mask=attention_mask)
x = x.transpose(0, 1).detach()
encoder_embedding = layer_outputs[0].detach()
encoder_states = None
if return_all_hiddens:
encoder_states = [layer_outputs[i].transpose(0, 1).detach()
for i in range(1, len(layer_outputs))]
else:
encoder_padding_mask = src_tokens.eq(self.padding_idx)
attention_mask = src_tokens.ne(self.padding_idx).long()
x, _, layer_outputs = self.bert_model(src_tokens,
attention_mask=attention_mask)
x = x.transpose(0, 1)
encoder_embedding = layer_outputs[0]
encoder_states = None
if return_all_hiddens:
encoder_states = [layer_outputs[i].transpose(0, 1)
for i in range(1, len(layer_outputs))]
return EncoderOut(
encoder_out=x, # T x B x C
encoder_padding_mask=encoder_padding_mask, # B x T
encoder_embedding=encoder_embedding, # B x T x C
encoder_states=encoder_states, # List[T x B x C]
)
def reorder_encoder_out(self, encoder_out, new_order):
"""
Reorder encoder output according to *new_order*.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
*encoder_out* rearranged according to *new_order*
"""
if encoder_out.encoder_out is not None:
encoder_out = encoder_out._replace(
encoder_out=encoder_out.encoder_out.index_select(1, new_order)
)
if encoder_out.encoder_padding_mask is not None:
encoder_out = encoder_out._replace(
encoder_padding_mask=encoder_out.encoder_padding_mask.index_select(0, new_order)
)
if encoder_out.encoder_embedding is not None:
encoder_out = encoder_out._replace(
encoder_embedding=encoder_out.encoder_embedding.index_select(0, new_order)
)
if encoder_out.encoder_states is not None:
for idx, state in enumerate(encoder_out.encoder_states):
encoder_out.encoder_states[idx] = state.index_select(1, new_order)
return encoder_out
@register_model_architecture('transformer_with_pretrained_bert',
'transformer_with_pretrained_bert')
def transformer_with_pretrained_bert(args):
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768)
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768)
args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 3072)
args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 12)
base_architecture(args)
@register_model_architecture('transformer_with_pretrained_bert',
'transformer_with_pretrained_bert_large')
def transformer_with_pretrained_bert_large(args):
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 1024)
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 1024)
args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', 4096)
args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 16)
base_architecture(args)