-
Notifications
You must be signed in to change notification settings - Fork 2
/
voigtprofile.nb
executable file
·6220 lines (6175 loc) · 330 KB
/
voigtprofile.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 337873, 6211]
NotebookOptionsPosition[ 336153, 6154]
NotebookOutlinePosition[ 336647, 6174]
CellTagsIndexPosition[ 336604, 6171]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Remove", "[", "\"\<Global`*\>\"", "]"}], "\n",
RowBox[{
RowBox[{"H", "[",
RowBox[{"a_", ",", "u_"}], "]"}], "=",
RowBox[{
RowBox[{
RowBox[{
FractionBox["a", "\[Pi]"],
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
RowBox[{"Exp", "[",
RowBox[{"-",
SuperscriptBox["y", "2"]}], "]"}],
RowBox[{
SuperscriptBox["a", "2"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"u", "-", "y"}], ")"}], "2"]}]], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"a", "\[Element]", "Reals"}], ",",
RowBox[{"u", "\[Element]", "Reals"}], ",",
RowBox[{"a", "\[NotEqual]", "0"}]}], "}"}]}]}], "]"}]}], "//",
"PowerExpand"}], " ", "//", "FullSimplify"}]}]}], "Input",
CellChangeTimes->{{3.589141428349868*^9, 3.589141506763188*^9}, {
3.589141538099386*^9, 3.589141541445528*^9}, {3.589141599178442*^9,
3.5891416134023123`*^9}, {3.589141645434649*^9, 3.589141793612516*^9}, {
3.589141856378949*^9, 3.589142010649158*^9}, 3.589142051245096*^9, {
3.589142081296341*^9, 3.5891421048884077`*^9}, {3.589212181299831*^9,
3.589212281173173*^9}, 3.589212316440033*^9, {3.589212393526265*^9,
3.589212490454341*^9}, {3.589212526346519*^9, 3.589212556376099*^9}, {
3.589577809293406*^9, 3.589577822285445*^9}, {3.589578068806325*^9,
3.589578105076085*^9}, {3.589578835216187*^9, 3.589578931598854*^9}, {
3.5895789996216507`*^9, 3.5895790183328533`*^9}, {3.589579126141654*^9,
3.589579232903949*^9}, {3.58957929528621*^9, 3.589579324222478*^9}, {
3.5895800187464037`*^9, 3.589580028216239*^9}, {3.5895801271923313`*^9,
3.5895801460789003`*^9}, {3.589639051565568*^9, 3.5896390728991337`*^9}, {
3.5896391890543756`*^9, 3.589639223182481*^9}, {3.5896392573245497`*^9,
3.589639261443922*^9}, {3.58965770822427*^9, 3.589657729838888*^9}}],
Cell[BoxData[
RowBox[{
FractionBox["1", "2"], " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-",
RowBox[{"\[ImaginaryI]", " ", "u"}]}], ")"}], "2"]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"Erfc", "[",
RowBox[{"a", "-",
RowBox[{"\[ImaginaryI]", " ", "u"}]}], "]"}], "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"4", " ", "\[ImaginaryI]", " ", "a", " ", "u"}]], " ",
RowBox[{"Erfc", "[",
RowBox[{"a", "+",
RowBox[{"\[ImaginaryI]", " ", "u"}]}], "]"}]}]}], ")"}]}]], "Output",
CellChangeTimes->{{3.5896392420029297`*^9, 3.589639271801778*^9},
3.589656669767989*^9, {3.5896577216099358`*^9, 3.589657740025144*^9},
3.589658608439979*^9, 3.589661213156426*^9, 3.5896617220133324`*^9,
3.5897164943080635`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"a0", "=",
RowBox[{"{",
RowBox[{"1", ",", "0.1", ",", "0.01"}], "}"}]}], ";"}], "\n",
RowBox[{
RowBox[{"plots", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"H", "[",
RowBox[{"a", ",", "u"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"a", ",", "a0"}], "}"}]}], "]"}]}], ";"}], "\n",
RowBox[{"LogPlot", "[",
RowBox[{"plots", ",",
RowBox[{"{",
RowBox[{"u", ",",
RowBox[{"-", "20"}], ",", "20"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Thick", ",",
RowBox[{"Hue", "[",
RowBox[{"i", "/", "3"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "3"}], "}"}]}], "]"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "500"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Voigt Function\>\""}]}],
"]"}], "\n"}], "Input",
CellChangeTimes->{{3.5895793254983473`*^9, 3.589579350016274*^9},
3.589580044636072*^9, 3.5895800863048553`*^9, 3.589580184782999*^9,
3.589581474751689*^9, {3.589645680918455*^9, 3.589645706725733*^9}, {
3.589645749205955*^9, 3.589645768885724*^9}, {3.5896458352702827`*^9,
3.589645835702222*^9}, {3.589657767797904*^9, 3.5896578810744658`*^9}, {
3.589657925138925*^9, 3.589657959057356*^9}, {3.5896581158065166`*^9,
3.589658145501042*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[
NCache[
Rational[1, 3], 0.3333333333333333]], Thickness[Large],
LineBox[CompressedData["
1:eJw1l3lUzQ3Qxy/dUrm3brf9hkSiSMvVjRa/X6hEokKLh6gQIm1EiyelwmNJ
+2IplBZriNAMlbQoLSKtpFS/23bbE/ftPed9/5gzZ87MmXPm+8fMfNRcvez2
z6bRaIIZ+18f/GuLQCjk4nNqzFue5GBXoMJo0zQXRagUp7q1HLRhtY3nT3Jx
bdm/UtGmHFy45vgfr2Eu3hUtb5trzMF3F66Jt3dxMeVPwgKhAQfFV35ZgB+5
6Fcy8rdpOQdj/fZu/jeFi8nSD78cU+RgzizfOzRDLpamZvFG+5RRdL+lvvJu
fXxL5R8Rj1ZG2a8lnunRejgwuOaFJU8Z7YqS3TTLdTFEmpNv2KiEgQOmnlc7
dJDOKZ809lLCFyeTDz/cuhIXyV/aqzJHCW2u7Vj4N2kFntM0aem7ooiW19/Y
bORrYYritBLIKmJG6akG312aaFE3fu9BogLuCY+Vr763FDmfb/RaSipgyF6R
B3NlNbBgndtAQaA80rRVYf05dcwcPK+a2CmH3y4mReZ8XoRstQ3RCw3kcJ6k
R9bIOjVcPLzX9lioLB4x0BJtmqeKcz6ujW3NZqObYeu9oiIVtM2vmr4OMqgV
YCQ8dkcJKwsObIv+wMK0FvviU2by6HbprMVvLWnU/6k/Vb9KHo21F0dYq0lj
ca+Mru4yeYxUGPycoCiNXePVKV1S8ri98WvUPLo0arGtfe2b5XDT0UjPlmYp
fGKxYZH2STnckfgqjHdJCosfrvq3PVcWn1VdeMfsYeKvUHkTSyU2XrZOinO+
yEDJ4IcDMZJs/MsVik+EMHBlgNXt9mkZ3B695eNFHwaeOBYsefq7DCacOsKM
d2Kg2K7Or7nZMnj4Xuh77lIGqq965s82lUGLee6XInAuunZtf9iyj4XaNpu9
FChJjPje76q1nYXCWBWaS4skZjdHKZy0YGHy5/SKlGpJFNS+DmYtZyE7J7R0
KE8SZ5+xSozolsa1R9gmzCBJJPR6amyZ0mi66cT0oIQkFsQtM+/eyUQJ3pOu
ZhUJFN/1y22WCROlF6c8/siQwJ0LM85y1JjoYvU769EfcRRkL0ZrioE8iepq
6zZx1MQFxo/PMPBY0eOMpjRxTOyV0zt9by7apXusNFMXR39i1nzGlATqbjAS
Js+fg7o9jSM618XQ5PuU1q1WOvoNamsqhouhv5O5X20lHV+Mh+7+e1gM1e7s
ChgtoKOZmNb7ytViaM9Ies1MoKPd4tMJh+pFERSN8yNt6Oi/m2N0e64o6rRI
XbtXIIIFNc5nFE6L4IGOyG9SUbNxQ0GTxJ+dNGzqtey7/FcID7Lvrik1nolz
OKE+NUJQSvE6FL2Qhr4q3gOb7gihYVzs2uZ6IcRupYu3WglhSeBO1vWpvzDn
/cGqzNi/8C50lEFa/oFpobNzruaMv8wVi2ifBA1e/Gpbpyn45FW6n5M9Cfn0
kY72FVNwe9uukge+k8C3U686T5uCTeyw8C9ik3AuYFvGinuTkBRXO1tTewLC
5EYfNU1MAC/VW1hxagz2NoqdYaaNw/GshxMyssOQmNC9bIvCKOhKHQtb1y6A
nYFJ9/QEIzDks0LK974A0uTKK22rRsDHJGtxvaUA7NN2b7SKHAH/6nSb+KAh
qNZ4m6E/PQzDvcutDCoH4HfvkowGgQD8nt7bE39gAOzuvjsqqBXAWPASv3Ha
AAzaFRs45wlggqV686VBP8x3kE+R8RfANI89anqTD1WVZySMpodALGziloVP
D8gS4SwTzhBEWvs/z2T0wOuRrV/PCQdBXEFQIZ7ZDc2v/nzV7BwEySxqrLzp
FyzNvJAf9ngQpKtbrbeadwFLUT431mYQribucn3U1gndsXzWe94gsF2/npQ5
3QlR3eJlDqqDIDdak1734Cc8Hsxlre0YACWVkgkHpQ4w431oumkwAEk/zaRe
PvkBlYXPHVcyBoDzoHAxZ8sPYNf06kV1zMxh9sKmOfQ7XP1wpSU9th/WV+20
etvQBqsz/huOpfWDxb5tfmFz26D/5RHHmy19sHHE6qY52Qrl4znGIa/6wJpj
OlqW1QxfryrEvDnVBzsPLE6rDWoE05ofubtpfXDB2zfq2rOvINPow8r7yYc3
QUVedv1fYN2u4ramMj6ox7itrXVpgB6Xs3XZ8XxwvJG35FriZxCs2uZtF8KH
i1kiTLuaeig0TTn66QAfBHC7qWZd3cymK9KxM+KDRsXwu+jAWtAOpps6LOGD
U8P6bNunNWC5N8zQQIYPyO8IqFnyCT63fDMNoSjoHjiIi95UQf1i2NPbSMFW
MfEr6Ss/AgaOxOuVUbCAu3FFukw5uK1t0bPPpuCcVfeUWtgHqGv5c2JlKgV8
l6iytJH3UBhtkdh1mQL7E8sS1Q6UwCVLqfHAsxQU/PfhQNqXIhiu2Nrff4IC
tdseBmpW7+BR4L1awpOCqJfi9LQChCiWg+CYKwWtN23vmjkWgnekUVyQEwX3
K6PXmRm/glsLa6Y9bCkInKxpIxe8gIIAQ/dVmyiw0mAHk7OegePLpbS29RQo
2ttxyJ+PQffHxF+PtRRUCNW9zly+D4PLbkTVrqHAw+luVsj2TIDjGYUqPAro
eUt+BnPSYLDB+PUGLgWksrXpFMaBnMPi+C16FAwmJrkPJZ2FivDXzjxdCoJm
x5ZYrD5EPHKexRbqULAy2a1UjneFWLIw4k3mTL5V+XH/XOlUQtLtlKOu/owe
3K+vI8zuEEyJO18SV1HwvNHhbGRgNhHtd0jzuyEFTKQWFzs/IthvSw0kTCgg
YnIiik/mEYpyjq0sMwq8DxzpKY59TvTRt/4dt6Agfc1y65LHL4l5nODDhVso
qGdQD0qqXhObXbYOue2gQKw9W+b9TJspqU/O3bspSHUyMHILf0s4OWR6bD5I
gcH6uCMd7CJCZ9W8hv+8KahaMZrqllZMJLjJO+YGUUCjPRO6FZYSO9q3bwmP
oyCpR07vp3UZcfJgtKTJbQr06/xc3ZvKiRFbs+OfHlPgnrGqxH3iIyG6mRZ2
qYaCP1dix35GVBMhqTzLZz9m9DeZinly4RNR9o/+j/yRmXoN5xJ95VriR/jy
c5tV+KCrItnq015LdBe+9G7S4cMf6YKxJ5l1RHMy9+96cz7ETyov4/I+E2ab
qk+n+vChtLLxAtf+K2E2NLXW8QsfPAK+le5a3ki8+VzoOTLCB3H1Jnq4yDdi
YWduW5RsH2wKbA6pz2sixtRi98fb90GlZpuPv1wbMXHQ7oN6Wx94fm57eJ3f
Rgx5uOi70/shgjw+5uraTtj3imRc0+qHpfzj3ItG3wki6KJn/ql+8Fjvc7+p
9wdRozIyMbloAFYnCSoGdnYQ6nnVnhe3DoD4gE+vSFEHkWMXkkQLHoCsZN+l
K1J+Eu2zfn+78m0Aeof80oI2dxFu5UVrJLcNguetk3Hzc3sI58YdWomaQ2Ay
Np6np9RLaHw9h4kWQ8CwDqg1D+8lBGk9Q9NuQ3B/PED62D8UIdjno8C/OQT9
NqfPFzL6iMm/LsYb5wngRUhh4UPeINH8yXMBXWMYjLTfPtmWMEwsCd2y3sF/
FAzqG+ILy4aJMON31yeTZu5FIP/0iulhwutwYG1N4SholCmuF983Qrx8tS5M
VWIMZPcfqwOtUSLZeOMPmVtjwE9VGVlZOEaoxE+VujSMw03GCQNm5ySxrGFP
B333FMw+Id/srkwjDVk5QfsSheC8N7v2xSoauUzCv+VNiRCebCLKGNtoZPuH
ShPpYSG4qh56/jSCRobXGWa/16Dhuw+vr9JHaKRSV6vhwL80DFNxN79TNYu0
XVfx4Qp3FtLfPnnQESZCMtQkrj69MhvnMLaFuvaLkXpWEjtrFEXRcanzzO8x
h+SPLfseoyWK2evchZLqc8hT9IPjG0xF0eZUQHCe0xzyber+Tz6uohjfdesU
vWQOOWT36smfHFHUeDvknZEiTvb2ND5tMBZD8xMxrr0bJcmfN26N9tjMwbD2
hvU+t5nk5qyhqMMWEtj6cvPRgNdMkvQyczDZLoFGMRgf8plJWtetPjfbVQIH
zbN7LsyRIot95dd5BkvgnpzgK7ePSJGye1ZL5ufN1J9Qb6rnSpM5q1NHDRdI
4qTompcqriySVvjr+PaZf+5RSsS2EIEMGeti2cE5xMAK2Yhf0jQ2GVbT2O3l
z8Cui+dC0phsMtngjturUAbOCwrPLV7GJh2TZAUGyQyM+ues+FwXNlk3FTpd
UM7AvfNDMKGCTa45bfCGpcVE1k1/3cd3ZMl1zavVzX8w0SvdnfVzpzz5tN5J
Z7uxNO45nDw/MlSJHDNpG5V+w8LztifWcFNVyKbxOB77qQzS5eK6zkwtIAUh
Fr+H0tj4peLcYLi0Gul3/cmKzYdkcUegKy+5aBE5ku/4z35tOfScSy2qclYn
A4eu2nbWy6Fqzvt4sd4lZOUZ8j14ymPgi/X20ilLyTFpr1Wpogp4PMPzOU9H
kzy4g70j/YICMmYbuq7s1CI7abFL02QU0fzo9jitmBVkq1xHhshlRVR6Od/L
XH0laTC/1zfhtyJe84mK1v2iQzYxRZRUPZXQLmKr9vXnumRmmNzNlmol1NoV
vuNOsB5Jf9hhqK6tjA1dEukxO/TJT9TBDLikjFWunWZsVS5ZpcRtGOlQxu/0
zIm4RVwyMrc6/WinMo5keDxU1uCSb4VMra4uZVSmqHlq2lzyG6vBo6FHGd19
BeM6xlzyztiu7LwBZZwKE97f4sAlHzfa2u/7rYwad5U5569wSeA96D3P5uAa
y6ZPjBguyfOdMp6S5aB1T2rk1Xgu6XtTuOmwPAe9tReOJlznkkX6selWShx8
/UzjU0YOl4x1OGMkuoCDdu+5EcWlXNLMe1rtuCYH93uMmmys4JI6mZRTsxYH
AyTzhyuquKTto7m2G1dw8LqN0b66z1zSOdQoWFWHg90NpMmPDi7ZwGuoLl/F
wamA2cP7f3FJqX+rRQx4HGSqFGf19HJJrY5H4zcMOajvYqk4NMQl9zyKUPUx
4qD5LIkqv1Eu2eR8z75phlcdb5eHT0xwSdMbjI0bZnj2sPl/xkHTXPL2dNl0
7gzv/h8Pk//Pw/8DN/i+EQ==
"]]},
{Hue[
NCache[
Rational[2, 3], 0.6666666666666666]], Thickness[Large],
LineBox[CompressedData["
1:eJw1mHk01f8T/6/tWq71XtdW4WaL7DfKUu83spWkBUWLkIgo2SJaLAnfElkj
UbJmyVLq5jW2FLKvH7JEQsiSteTnd87v99ecxzkz58ycef4xz6HZexy/yEwg
ENSZCIT/GwN/HFnY3KRD6MtIs6IKGowHCC31/6WDt1lPL+8Wm/MPrbxZo8Oh
iEeHr7ylgaTW1Q2PRTrY6KuNyb+hQXVEDMfwOB3aJveNpJfSgEO5Rxy+0EEr
SJPlf4U0eOxld/j2EzoEFwTnH82kQR7T9ReEvXRYZHpWEhJNA7aLxuqiZ9Vh
3j3YcfoCDSi9dW4Zj9RA35Kv9tIeGhyvSXaQb1AFkxM+zG/YaBDwa79b9KgK
HIpsHQttlYS3vsmXC48qQx/7fNH+FEkwj7GU/JekCOY53xzP20mCceoHc5Np
BVB1MviySJOEl/U3uq/byoPr033qYp8k4FzIY2pLthxo2um5VOyTgCA7lgIS
RRZG66MOkHLEgaAkgQxCpSHG+Ht7mIA4/BeZdC+vayeIEf2jpc7vgO1czjm/
9Wkw2TPCKZyzHVw1FNj6t0tAznZRCXLLNnDYO5hdU7MN/uTaX/g3KAYKftqb
7i9EwNuZp9VqRBTSv56ovaFHBf9F5oerGSKgPqa+3rmHCuX6YjlTqSJQOyWg
qrqLCj1EM+u+RBEYX2l5Ms5LBYvEZdv8ByKgQDa7fmJAEIyKI313+YvAa6OD
O5V8BUFtNNbay2KrvnDP7eF8ClSN7JpUXxcGy3JKuc4zCtjjkn35v4VhnLHw
Mz6WAnTNNxk7fwkDR0OR9RF/ClhwY1lMY8JwZExR5Z0xBewsvhZFfRGGbhGZ
wdhvZHjL03emNU0Yftyh6hqLkCGQb49MNy4MXIGFv2K5yDALF5O1tIVB2c/0
+fBfAahfrl2LpwuDj3sgl/+IAASbfzTAZIWBaPu9Nz9XAFIMDGIPkoRBek+Z
N3m/AIQnGYxTO4XAfvxk4dcL/MBdtaPY0U4IwkZm7RVO8oO13G6jiVNCkDsQ
LuRrxA9pxcPFDseEYKGdEci/mx+K7oyU6OkLAfMt08SwCT4YfRrZmSAlBJja
ZNsxHj4QdhbC48eo8C5ul+GEFQ+4XpxmYzlPBQ7bHw5MujzQkp/j4mlFBSvJ
l3fFaDywm/nC164jVFjIlQKzn9xgvpqr4KdLBXkQ1ym+xQ1+OYNe0qJUSJwS
VPPPJsGG2V2m8RZBGC/sOBr7PxIYys2X+X8UhD3eMe75niR4oFPisMkQhJZN
vvxBXRIs3cbMenIEgUglyRm0cQGJVYjpzV1B8MaYdnCvcwKPB92hR1UQqllB
R2aIE0KfX5TQkRUE/oYgmwO1nLD8Uu/FvW2CkH/yb8LVB5wgmJGd1ssmCGMu
K+SunZyQZ812yqSPAscfz3A8PcwBqwRWAmNrz89O58u9UeWAjwZe/qfcKTAr
7mrUSuWASFuZsLYLFIjImQhmHmaHPt4WD0uTLR1Vjv5z8mIHFR/gD6dQQHWy
77dKKhGuJ727kpFOBq85JXnhECJYsqb/iYrd0snKnbP/LhNh+NqsvGkoGfSI
Ch+b9hHhYM3DU+rOZDgu5Z/g0skGZ3t/XM3bTQbvs2Laz0lskD6SrWOdLQDv
HN3dIxZYQYmkenA0XgD+uVZnXOtjBR4/JnO1UAEI879MwrNYYX04XYz/ggAk
JrwbGNBnhVwa190a6lZ9m80tIX8WuPzWxj3Qkx/+9RaUbNixQCjjx/uBM/yg
P8w8MWbMAtKaAtTlLR01zuZalFBZ4CGr86yVGD8MkP7QLIqZofaYqG9uAB9s
Gj6pvT/BBIkxpez4HA8cfNfPuWFFACqF617VbS4oyM3UqtchgJxoYN9rPS4Q
eeLh8kiSAONa/UqHmbmge4UYc7hzE+l+26YafJcTZAKs+FPX/6GB6mTz2Fsc
UH1niRs33kCXCLb3Tl0lwt8HdGLY8BoaHOYTu2HGDK0e9RfFctdQk7V4pxyJ
GZ5b2NYVXF9D6p3J/zgamOAQOTikh7iGPPOKlK+aMEFSXDuzvNIq2uvZ7qxo
QgDNlGubjTeWkeb8UfbhvL/oak7hqgBlER3weVak4ruEVHndg/WHFxBLwWXT
bPISmvdU5L3+agHpykzHrxf8Rp66OVKdxgvIjI3rtMbUIvJuyTCPvzmPkvy8
NDDXBbQ4tdtUo+kXkrsbnvRc/RfyKs0+F+/0C/l7yYvkhc2i5UAZrxXCLxSk
Td+RPjCDVvkl0io0ZtH+2/IUxwfT6K8meWl/2jSKt3RLiuacQsTg1WdGnpPI
Qis1OtXuO7pn5l2exT2JMhaGpis6xxCH0EIjR9YEoiam108eGkNcOT+XG/p/
oLuTfcTI/aOIr2XQ7KjhOHLNqFNh1h1B0Ym29kVD31Gi+IbTJAwjsn2vr4D/
dxQc0TczZzyMBJfaMjoKxlDY0OfRpreDSGRb3aq1yCjKanVylTjQj5LG9Hgr
Xn/bmid1n+7l/5BYQaWU2JFvKLQtL+9Vch/aoffWfODOCJJihIomcPQig2Yr
06ruIeToOu/EEOlCRhcsvIJJQ4icfGjvm0udyOS3aZohPohWRxWlhd53IDOx
/UufcwbQvMf9b0SPdmTlJJXefrMP2bnHlg2SWlHEtevhMWW9qCDFyPgjUwv6
cLPG4/hsD9qsO21r9fsLko51ONB+vhs1MEKsqYuN6NTTEpmYxC6U+zAixWSz
AUXmsPAcb+tEjyPUOkmCDWgBPe9v0+9AMwNu30ytPyHZxsXqRwHtyHlc69Kn
0Hp0utsg91hpG3LL/qQzyPiIYHrUr02mFcVZWhzpPliHJn5dgp0fmpH5ZPXj
93G16CiR42GG8hfEs3FD78CvGiRON1HMEGhAxkvinDRGNQo1nVinBX9Cd2qq
YoNVqtH0+fDP6b8/IvWVEIfwvCp0wmdXIs2pDr2u/3BHVbUKvYv65JTeU4MU
d9/+fvMDINpzZw2aaTXy/dh43f0EoPAKDtb0d4B6OFw3SWMIDaYdy9Q7VYke
oW1x4eoIvWp6pK+n8x61t7FznIypRAFrbUO4+FtktTPisQdLJTKVJQfiTGWo
J5x+ciD0AxI+cVwMHytGOvkb+5+IfkCNm9Ietx68Qn0JvrKvKhnI+XRmTtDJ
LJTEP43I3gzEWiIzFiiWjg5X3Elu0mUgXNRs/zrEIVkuS+l+KgPNJSY5zifd
Rdtlo3IOEBjoJvPjOqN9LlhctOPJlT/vkXKyQ72g5kPsRb22EhsnAw2KFs+S
+FKwwLpIMWc5BjpB72WE6b3AJF3mhiWsGai8z/ruvYBcTLaWLKWYyEA88FOq
1qYIWzJLvRA1xUBYbF5YrW8JpjYr9Qcz/4CuOblO1j4uxx7OERWNaj6gDK3d
ZnXFFZh36VHep6aVqJP7Z0FdMwP7sOdektFIJSIO5wp8/ImwIqOwjAMRCKWc
1tB2CKnCFmvTrujvBKRhEOc6Sq7B1gP1JknhgJoVl1Ic0muxqw+/rvkvAyIQ
yjYdKusxz3c3rY1mqlDSpKDamNln7K8EufyZdzVS7/Cyd+xvwALD3ZpSiDXI
8eWeOsfVL5jG7mk/b/1atPHw8fJYWAuWwLIn6uhMLWrUXY99HdGKBVzhP/bx
WR1ylLWpUxdtx3y/XaKG0OqR6jauQc/hdqzp6b7l+tl6tMH3bvl1Vgf2frXs
UEbtJxS/JrqLrtmFIXuGKiWiAdU39UXQT/Ri5kvIpzCgGTn7/Vdvu7sPK1cy
5uPPbEEc0v2sISz/YRc7ZffqurWiQwEDQZ0l/dim4vi3nII21CQ/5OktOIRl
xgvTLnt0IreuocLU6SFsrkYgj1OxC4XhV5ft7Yex63/EHz+d6UJy01fpkdoj
2CFfvq9pt3qQs4Hnq/6pb5iaaaQGGvwP7UtaaPxlNYp9bibJf67uRxy/PKdY
akYx2qtWlrK8AZSTfF1O8ckYttwkQ5CLGkRT817pNw+PY6ezErQeGowgt2e+
cTvyJ7GEM0Uq8sXfke7ySomayBTW5yrm5206jrjN/NoNQ6YwZ/9zNtSxcfRq
xY/P/cxPzLDO84iR5ASaNfe/X8k9g1m0C0jLlE6ht0GVlYWacxipYNYlS2oO
Pcv596XCbQ77J5hytubOHArvPPC1JmMO28vGVzQ3PIdOKaA/PbzzWPlkZpBv
xjxa60L7CD/mMcOJs/fX1RaRtlLVa4uERWxP7imLqtvLSKOzO77y8yImc7Ev
OfDHMlINmPZX/LuIBcWsq7AdXUGyn4UNOC78xj4xEStcJVcR5aJ7B1JYworH
uO6YNK2h6ZRtv5UrlzHR3ly1B4YbKI3bR4Pn+xo2VugVPXWMGZJLIkUDhNex
7Ue0N54+YIZ4m/SNCdN1LNvM4aVfIzNEZTfV1RasY/K9fjzRhizgd1DK6qbf
Hyx6+UTmujYrHL/Z6vOTtIF1Y+eKZ+SIwOxDHXAUJeC6+8+7hM5zgo1dbvvb
PQTcq6N00VSNC14fwj5zWxDwjX/DU2VXucBewqW8NIyA75cb/+/aLBdUf2JE
s/4m4GH0WoV/YyQI3uZo+KKZCc+p2MU29o4HBtjWdFYnmfAPFl9xlUUe2DP3
P3UzNmbcaPhq9HcFXhirfSPxW4cZT92gvrifyAsH3UnrBjnMeFqVzJK3Gx+w
Vr0uGA1mwe/6ZjYM+PPDmTzjzL1pLHiKCuHR30f8UBo38CTyHQuuHL1e9zmb
HxwvE+/T51nwgE25titd/FBHsXEIPseKE16+OjOlsHVPOTGJSGmx4awp2ip2
9QIwaBHP63uSDddy/fM+s08ANHV2szV6sOFSB+tnMn8KwDif5YLnSzacKlWl
2s9LBqOK7KZqChFXoiQP6R4nAzu3xR37WSI+JqmTwdRMhlNyNqDJyY5f6jho
ajJAhlx9x00uaXbc3lV//vwUGcxv+AWWnGbHz/yw/UkkUiB+/NkN1jp2XH3E
j3JChwKyVfPXXj7hwAnjnb3NTyngN/CnyL+cA19PyHJ6mUuBhhW2OfM2Dnyb
vKrk+XIKuCuLua8QOXHDvLPHfL9QoPyJ/mUTT068tGzfH+t1Chj6xNpPmXDh
1q0H9nseFYT4R6nplQ5c+JXC7VHFpwVhIj9rOCaIC/fdK+Uy4CAIUaPvz+mU
cuG7eA+/Wd7yWZ0WYzZREiR8pu6TxKE0QXDcrXFCeZmEbzYk1tZMCULwcLeB
53MeXGiZmErzpcJgxeErfgwefHXms/tcEBW0YyE+qIsHP2yplVMWRoU5w9zJ
CHZeXFbh/VepeCqcywt8+NyVF8fm2d/FlG7l+0j3d9L5cKWgVKOOX1RYY9Oq
2GbPjwelXwsJ2/JHRU/CLIIWBHD3hRr3SGVhaKSE/eAjkPGldZuzOzW2/F5k
aFA6DxmPlTlxqERHGLbfDMmv3UXGHYKKLWpMhCH8zF0O0nkyHmT16lyqvTDY
7QiChEYy/tdywMcgThj407xVi19Q8PPX+QjPloXBI8ORf8yKip8rdrK+nScC
D24kpTxwoOJL3WVO94pEoMCieZfWVSp++Y+UaGSZCMz+26v34D4Vb+aN8Q9H
IuBmS/Lcx6DiE9+rSmw7ROCy4OuOKJoQ3tltvXFpXQScwjbjNaaF8OVnkV81
jETh3OXkHffuiODP5V+V+HeJwv1jPlr0lG14+yWtG0odYsAqGDd+a10c1xqw
3/W3bhv0NIbOhfDRcM7n/ezJ0dvBMsBeM7lmJ84oSX5tYb0D3Eg/dzbbSOMc
GRe0cgjiIJH3MZ44JYOz+rio/EoSh4C3Bif4nsjhFo0nh1j3SMDVl27lmiry
uPaNtdrlCgngZt5rr/xdAWf9YXRkVFISDK+cjFOIVcTtbukJuJyXBJGKHR6G
0sq4l26psne8JMR4hj9S7VHBS8mHvy41S8LxsKNKqeWq+MGVV1lsTDRQsA2x
fBGohi8VRSq1q9Cge5wzI9ZSHbe9IgdGdjRotv+uR5ag47a/xpnvRNJghDVr
NW4nHZ+pfT2zP4oGv186F4rK0vHqytCy9S0W/flzO02Jjmvzew9cf0ADx+sL
Kyo6dPyxwmi44yMarAdvvjpiTcdrizQuYQk0kM0UFbv/kI7fS2aL6c+ggZZx
fyt3LB1fNj+l+fg5DcwmU+5Fx9Nxb52DFWYvaHBNSXIpIZWON2mI2H7IpAGj
TLb1ZR4dLwth5k/NpsHxj/Sw2no6ntVy2tSqgAYXnZd0TRrpeEf48AB3IQ38
uN4sNjbT8ZMX0dGaLU41177Q0UXHiy+UdqgU02CiG9f9NkrHKatVluylW/36
MS9e/EHHE+5bfGdsMc+22pzJKTqOHXl80rOMBurnjYXn5+m4e5BL+0A5DQyZ
OJu9lug493eBkUdvaHDqeUPI6iodF7mW2mL0lgaXDaN0bv6l48YPhZ/+2eL/
9w/D//8/7P8Azy6Ejw==
"]]},
{Hue[1], Thickness[Large], LineBox[CompressedData["
1:eJw1WHk01W24NRwc8zw7HNOJUuRIxn4vMpWQUOGrL+RDUiFjlEg0Z5YGQykS
oYTwPjJUVDKmCEXmeZ7iumvd+9ez9lr7Gf551tp7yzqfsTnJxMDAYMPIwPC/
NXTwwMzGBh2UrJ6eT7GlwUCIyHznGh1+EcMMS4doYMnXs/hmmQ5O+1J87Dcx
Vfvs3zOzdEBS8uyCNjR4dy2W3DtAh9LFJcbrVjQg7/gmDZ/pIPo8WNJ/Hw3i
/f7dfymVDj8yvIq0EA2eM/o+ZthNBzfznYmnt9GA5aSpuvg/6jA1yjTVuqYI
gh21Xhl3dwLxw3XGqlERbKrvuSjXq8HqA/EPD9MUIWRS3+tOnyroLQHt9ClF
KAm455lvtQPm79NcFHYrgmWsHXU9RQV2lfMdN15VANMHFZZmY1vBl/JyoqNc
AbLeB7X7OipDhyvNdDpMAY5Fxgs3PtsCTw7aphG7FSDsX+Y8TkEavCoB4f8m
5YFhuww2uqIALF/HRTIz5eHH9ZSrz9vkgLAQWvbeJw9SHO7Zc4ayUFjA/+zk
pByc2rWVpVNKBmJSmguOXZYDl93dz6qrJcHmJetlSw452Bqos+H9WAzWZUaY
fK7LAvy03NqXKAZClbMNijGyYG/kYnc4RgyaXqqod0TJwmWeG88JbzFYuEdp
1LosC98f/zzMpyUGMVvqxYYDZSG66dLLggZRyL8df4DkJgsDW9+fmJsRgSSb
1lBRQhbSfx6qCTIQBhFdvnr6GBXU+9VXWjWEwdI28mbuMBVqRvjV1JSEYSzx
xD35QSoMLDamDvAIQynn/iiu31TYKmDhe6hLCPSe7Dj+8RsVCk32ym0PEIJ6
brHqsXeb/fkal3pzBaFI9Y59XRIV7IoFi3XTBEEi3GyUKWFzXvnMaGKcIGCj
96f0Y6lArn95+ECwIIwtEXK5N6hwoF9FtcxUEH4eZmc6G06FdjHF7rjfAtAt
WHLwlicVBsOF9UzFBGD9zI9usi4VOELzJ+M4BIDJyXamdDcVdgSaZ/au8UPB
X67F/zSo4O8dyhH8ix/YI26Ulm2nAqvjn47cHH4Y11c+oUOlgoLG6/MC+vzA
W/n7TSqJCs4Dtvk/T/DBw76hUOsEGYj6NeG81ZYPfHyU4r/clIGcrmiRABM+
cI+IEt8bJQMzzeWhfNs2+V84p4UCZIDponly1BAvJE+1/TU/IgPEzuGmg9y8
8JQaMNYlJgNlCUrGQ/bcsPcub+3IHWkgOw66MOpxQzqp9LRQtDTYU7MuS8hy
g1vJpIPKRWmYyZEHi1EuqAyPP6JwWhqUQVq34CIX1LW3d8iYSUPyiNDO4Gec
oG4sweyzTIGB/BaruJuccErgH36RSQponI/1zvXhBBUJpsSkfgo0bvDmdutx
QmsQcUKlkQKswpxbjJo4wExB08MjgwLnCUYK1wo7mL/awr6HoMA7Eugq9rDD
NVUO/4qdFOCrD3PYU8MO4XfCqmblKZBru5Z09hY7pPEpGQawUaDfY1GgTY4d
TgwU3vStlwJ11eKdE2zs4H3f339vmRRcmvOzZhsnQ8HRyvkX2VIgeXHmpvYb
MqTny4P2VSmwiR8nP9xPhnNrZM8yPSlIO5q75Y0aGVIc9z1sV5KCCelTJl+F
yaCadeWwu5AUXMseimDqZYN734rrfgxLQlVl37qbHxs057v1Rt6UBJ7IDMql
o2zw4fEd33Y/SXAyP6GXsocNakrf8YU6SsJSS3dQA5kN5tjZ95fTJEFt+Puc
6gNWOKfseOn1Kwnwm9quLBrJCpUV91+cSZaAksXwf9Y9WeFA2dybyBAJMGDd
WvdJixW05tvKywkJsJEPTvJoZQG/n+TDziAO5/+R0MnkZAH0ajzcK1MMyly9
va/NkMDlyYdJaujm3596l3HuOwn+8UkzNbUXg6hgT070lASjBVZhS6xikJxU
1tVlSALb+ovbjjmLQlmTw0WRYGZwlBxOl2MRgfWOvKK//zKDds311wvfhMGw
l2mo35QZLH4Mu0XmCEPDRI51kTAzmLZp+/dYCkMX56qsdQETjI7LVAslCMGG
cWpNzBAj3E86uKArKQh7yzrZ/9ozwJiTz036Fj7Iy3mi/V6XAfI/CQwmDvOC
WOoZj7tUBpAvKFyWuMIL7YussftbN3AYO8reWcEDiiH2fA9W1rFP+cJ/HOrc
8C58nguZ/sXRBr87XHdyQKJzjFcr319s/IrIvt3CDh5GlE/uP9bwXpzsaujP
Dnwsxtfvnl7Dcoby46YVZDgeHc/eF7eKV9yOaJFt2GDtFp01qncZfxxV8atK
IsHXM+9PSuQsY5cnra27jUiQae1Ym+e7jJOml7QsJ5lhn0BE5DfWZbztLmXy
mDkzpCQ0MylvX8IVTr4DSixMoHn/3EZD0AJ2yteu5NbawGez85f4BWfxB2b5
unMJC1iNxzvCsHcGJ81d7dwrs4CnfVR4fF/MYJ3InzEWOfPYRy9bvtV0BpeZ
iKHV6jl8vjHDMvHCND5xeWFHL8ssnh3ZZr7r0yQmdf/ipURPYr9Xz44luk3i
lp3cylnvJvBCqKLfIsMkvtWZI5yxMY6X+GQele6awJbbH8rOXRrDa5oC8/qP
xnDyWJguV/owZo1YSjPxGcZ1SUMajof78VWL88VPuYax+t7YJf3SPkwWmWkg
Px3CLRfyZpMpfZgje3ShvnMQz0YOXysZ/4V5G7strIwH8H9eR03ND/fgO8mO
zi97/uALI57qjwy7sYBzRwB/8B+srSfFO6z+EwvNN2W05PVjQc4AcQe5Tiwm
Wbt0WKwP2yc9V3yr9w2n9BvwlBb+xrEsiR5lVu1YIq9SXuLAbzwVxG/28r82
TDEosewK/4X3B3DOXcpqwUZf7M2r2nuwWUbL0YrjX7HJCWu/CM4evGTs+2Ja
oxGbzZk/MkbdeNJLr/voq8/YQkJ//mN2F+ZiNYvd+FqP7d3k05svfMf+t/co
PQ+vxdfO+UbHvu7AZrebcz5b1OCKC9VnbCa+Ye54P8Nw2WqsEOeyp/l4O3Zr
0eq4Pwj4yMMixdjkNvzdgaeWoxDj69nM3DZNrdiD6a0Gw7MKPIMzO5sMW3Bc
bI2Iw+dSTGuYfXc3pBk/OSrjh9fe4KPtRjkHXzXh7QYVTPuJYgxjfYFNil+x
qkaIVfvfQjw0+R/IVXzBxz3efGkPKsBWrOTbGTs+44/dqYwb5JdYmm6mksFf
jyPjMu7frsrBV8yHVmQjPuC+ODtSs80zPHY8+mP6XB0WLKzSdePIwof8lZJl
3WrxTeentRZDmbjsxge39G/V+FFunmTUWDqWzXTfJWv+DjcVXc4TEE3D0aVk
UnoZ4OqD7Q1/Gu/j7kcHnxgcqcQfbd4bWFam4Bef7hoa6L7F39WdTx1fTsQh
y009SLoElywP94mHx2NzmkAoYnyN41+F7gqzi8Wih2wkUH8B7rDd/f2G/x3c
sKFw5uKtF3jj7E3vGx9uYvejT7LDbJ/ihg/8lnb61zGpSLE/VCIdj89qdvvt
j8FI3EJ/BRIwS0fHtdGZq3gqOcV1OuUyNly9/rCUfhVfYIqvNdHyIEKE8wx7
uK/iHfdc3gtp3iZEjM5cdAq/irvFCyY4ee8Tf1padHfeisaH6B3lUQaPCbmq
PP1/NK7h4u+HL18NySG0K+OVe31vYG4Yla9xeEn4DL6/XGpxGxNxz6NqAoqI
Z4y37PyO38Xn3E4N18QXE5eyPM5pnozDGdrbLGoLSgnqT+3HGW8ScCvXaF7t
l3Ji7Mg+rxL7ZMzam8NfN4oJ6rVmzQDDVHz/6C4dl8gqou9j6/Hu4Id4l1HC
qT6BaqK2YS15YSMNf1GZv++SXkNQz9F9m4YyMAPD6w2XyvfE3iyOqovbn+KU
YaGd/RYfCW653QY2MdlYvcXP2bWznqhLct/vz5mLXbM0al2XPhNWbb1HjlS9
xH9vxy/0RzUSYUpSQ791C3GD3kpc4bWvRMbDyPX4j0XYleZQqy7eTASpxx7w
ln6D1SQ5un16m4nLlGUc/6cE/+UtWyh82kL8Lfit8guX4cRlcSW6ZhsRRbJV
G3lRid9/+n6NfqiDOHbbJO3bm2rsHvjjveO27wSnkJuTLlMtJit0kiKZfxCL
QjFavw7X4X0hXWGtRZ2EToXn62mFj/iTco/PeaEewsSz7pK4SSP2auvJfzDW
Q9RIvOcyOP8VR6GzC87OvURUm+IdoQNNeMvYWfp1nV/EAONr6WTuFuxu5POi
c+Q3wZRyYJzc3I61UmYaJu37iFpBxsQdTd8wedJnhLm6j3B68+/4VFsHzr7n
u0UltZ84eOWt4r6pH3hk2i/9wv4BIvpTzFEj9x7slRaQQMkdJjyVhiZ8C/ux
3sJi0U6xEaKXicem6dgfzGUR2GwcOUJkVE1zLnMP4BeLgbzeTqMESVlnS5bf
IJ6wDI6p5BonPl8++8rLZQSXhFVW5mtOEXPWzFI0lymclr3+udRrimiTyt1+
u3EKR7fu+VmdMUWQ8/98OKo/jY9sxavfeKaJx358TgKUGbzchrUYBqcJvbnS
C2zjs1hne1WhddIsMbke4pr9ZRHvam1PrPw4S1iXGu3eY7aE1ULGglXWZgm6
vzIHY/USpn0UNSKfmCP8eO+84ylfxoInvVvw1nlCWKu4V7d8FY/dl5zbUblA
JN0OzLKd28CPuPx3cf9ZJlQkT9g2PSTBvaLr4iGiK8TA+p2JqnESJDqk/x0y
XyEUjWYoOvoscOPZp9qavBUir2UgueInCwTulbe/ELhKiK0Jq8wrsIHNha/+
o5x/ierAIXaZBnZg8hfuchVnQAevm3g89+QFh39zmks0GFAh/UjDxUZeKNxH
fOSyZkAO19ZU7ST4wFnGo/hVFAMaqH9/d/EiH7z7UH6HNMeAHpuyvWu24IcI
SVfjx18YkWdjizt9RAC6WJZ1l4YZUUucSMY0RRA0pm6qW7AwoQMTWwyyDgpC
f80bmTldJiSkNh7RW7KpV7w5V4yymdAgA6cPf5QQkKoK8/oimNHcy3BcKCIC
Ts9Nn+x+xIx+J71NO2UqAq8SulKvlzEj1ca3DNUBIuDqyRpDn2ZGmbqS7hrf
RKBW0MEl4hgJ2b6cDj5/RxSk1yeOfgsioauHaCb+FaLgPxRhvS2BhOj3Jsz/
DIsCreKFfksDCbmda6IsoU395sYoJq/Ngg6cvvrIdVAMuq0TeQJsWdDb2soP
5rzioKm7jaXhDAtafK8jHKgpDgO8djM+WSwo1VwqKfOyOJiUPvv0TpAVSbDc
qJvjl4CHmfrVIqqs6Obqc9YeugQs3Gwu9dzHimR2VY0w20lAlvNalkA4KzIw
/2y5Hi8BbFzW4c4TrGi1xWzxK6ckHNniAJrsbChe/LeO0hZJyDF03eBQYEMF
LoN7PxlIgmVQYGjRUTZEMgdN1vOSkDiQFkSqZUPsA15Rj1okYYjxeUlHDxti
GRRsKtnU1zqU14u5K2woqJbmorshCd2HPp63UyOj6dQFt5ub+pxWNX0uK5WM
inJ99/b4SUFg1+rL4GIyEhiPOVweJQX1iyxTlk1k9KtPLFMxWQq8d0h4L7Ky
I5EMLum8UikoTjX0NPNhRzIFwfacS1JAfmORLXWTHaE7odswKwUcmu2Hpp6y
I823SqkywhRYJ59yS/nJjmzqD6bMqVHA2D/OecSMAxmfH8qxOEmBxLsP0itd
OBA21SmrPkeBodynvbFhHIjTxHmSIYwCN/reHtN9xYHURp2sOxIo0Grd73BD
hhMNzano7ammgOu2XYd2LHCimHsb9dki0lBsQsQy8XMhTp+rj6Kom/7N2byp
fRsXIkKp/aZbpSE3+R+riye4kB93/z8X9KVhjiVq/9dPXIjLwJxU7ywNEb3t
Rj6Z3Ih68k9ZUbY0dJfuPx1Yzo18yD8OFBZIg04cJIa1cSOeHz6tmaXSMGWc
M3yNjQeF7JHXPvFRGo49D72deYoH5VxbLLUc2uT7K3S20nmRx9wNVXUFGVhm
0S6VdOZDf07v8fDZ9K8vU6Osw2b4ke059OLXTio0CEYN8jIIIKX8qa/bd236
8etXwtK5BVBwaeekvxYVpC5E5tYoCaB8+ooWA0GFaKfLZM7jAsiWlvtkcj8V
/qWEQVKDAPouO08yPUkFvkfn1QoeCyLRjJ70tU1/fybDla/fXhjxzvkrB05R
4VZQyv1bLsIo9hNteXWGCnnWX5S0zwqju/0fxMPmqTCxvtvgVowwqu+5cjh0
hQpejpw+WuXCyIybwuZOkgVPocKWG7Ii6NKc1u4pUVlwi9pI3DUmgmS7OLp/
6MvCMc97lKvhYkiW1+tCxBVZiDnor02/L4mi3RWLTpLkgCSUMHBxRRq9Fg26
1BIqB98arkxF8soiPTm9QlqfHNiFOGveq5ZDR48HnbpiIg9enKNyXxwUUBel
SUAjVR5kntclso4oIqRQ2NcxKA8hJUaHeFO3IAm7Vas/GgpwNsurWFNVGf09
WO3TE6AAXEy7nXf82YrSxGo8P7xVAOPTtglb41TQy7j9ZKsVBRArpZwxVtiB
Un8KfnXcqQixPtF31b6pIidDmuRPD0WwibLa/qBYDZGAcB5PVYStjpF2j0N3
okMLLDZl9YrQPsCeEWenjl63e5mprirCF+c/BgIydBT6IbjLg0aDX6SnSwly
dKRbee8DbQsN5rLc88VpdHRRsupu3yYWHx2Vkt1ORxxrtm+dlGng6juzqKpL
RxPuzKcPqNBgJWLjxYHDdJTUU2SnpE4D2hNxiZjbdOQaXhJfo08DbdPOr1xx
dKSTa6YTuocGFsP3r95JpKPZY+cqdxE0OLedOp/0gI5ifpc7ZyEalL+mfc16
TkfbiFtSUUY0sKmjR9W839y/EnecMKfBSfd5PbMGOqqOOzA3v4kDOd7MNnyh
o5XsY+65+2jwwFLnREsbHelvK54Qs6DBUDvS+91HR6Ly4eenLDfvDWSaPTlI
RzsC9FmzrGjALVmTPTxCR3KOef6O1jRQP24qOj1NR2ojnQu1B2lgzMj+xW+e
jpTu5LOG2NDgSGZ95NISHVmXnVxQPUQDT+MbuhfW6OhFO3td/yb+vzwU/X8e
+j/5hmzS
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{-20, -11.165233303712355`},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& )},
FrameTicks->{{{{-11.512925464970229`,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "5"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm]}, {-9.210340371976182,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "4"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm]}, {-6.907755278982137,
FormBox["0.001`", TraditionalForm]}, {-4.605170185988091,
FormBox["0.01`", TraditionalForm]}, {-2.3025850929940455`,
FormBox["0.1`", TraditionalForm]}, {0.,
FormBox["1", TraditionalForm]}, {-10.819778284410283`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-10.414313176302118`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-10.126631103850338`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.903487552536127,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.721165995742174,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.567015315914915,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.433483923290392,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.315700887634009,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-8.517193191416238,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-8.111728083308073,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.824046010856292,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.600902459542082,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.418580902748127,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.264430222920869,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.1308988302963465`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.013115794639964,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-6.214608098422191,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.809142990314028,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.521460917862246,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.298317366548036,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.115995809754082,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-4.961845129926823,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-4.8283137373023015`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-4.710530701645918,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-3.912023005428146,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-3.506557897319982,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-3.2188758248682006`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.995732273553991,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.8134107167600364`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.659260036932778,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.5257286443082556`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.407945608651872,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-1.6094379124341003`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-1.203972804325936,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.916290731874155,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.6931471805599453,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.5108256237659905,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.35667494393873245`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.2231435513142097,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.10536051565782616`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}}, {{-11.512925464970229`,
FormBox["\"\"", TraditionalForm]}, {-9.210340371976182,
FormBox["\"\"", TraditionalForm]}, {-6.907755278982137,
FormBox["\"\"", TraditionalForm]}, {-4.605170185988091,
FormBox["\"\"", TraditionalForm]}, {-2.3025850929940455`,
FormBox["\"\"", TraditionalForm]}, {0.,
FormBox["\"\"", TraditionalForm]}, {-10.819778284410283`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-10.414313176302118`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-10.126631103850338`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.903487552536127,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.721165995742174,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.567015315914915,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.433483923290392,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.315700887634009,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-8.517193191416238,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-8.111728083308073,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.824046010856292,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.600902459542082,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.418580902748127,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.264430222920869,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.1308988302963465`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.013115794639964,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-6.214608098422191,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.809142990314028,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.521460917862246,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.298317366548036,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.115995809754082,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-4.961845129926823,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-4.8283137373023015`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-4.710530701645918,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-3.912023005428146,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-3.506557897319982,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-3.2188758248682006`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.995732273553991,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.8134107167600364`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.659260036932778,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.5257286443082556`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.407945608651872,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-1.6094379124341003`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-1.203972804325936,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.916290731874155,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.6931471805599453,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.5108256237659905,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.35667494393873245`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.2231435513142097,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.10536051565782616`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}}}, {Automatic, Automatic}},
GridLines->{None, None},
ImageSize->500,
Method->{},
PlotLabel->FormBox["\"Voigt Function\"", TraditionalForm],
PlotRange->{{-20, 20}, {-11.165233303712355`, -0.011256927702343536`}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02], {
Scaled[0.02],
Scaled[0.02]}},
Ticks->{Automatic, {{-11.512925464970229`,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "5"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm]}, {-9.210340371976182,
FormBox[
TemplateBox[{"10",
RowBox[{"-", "4"}]}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm]}, {-6.907755278982137,
FormBox["0.001`", TraditionalForm]}, {-4.605170185988091,
FormBox["0.01`", TraditionalForm]}, {-2.3025850929940455`,
FormBox["0.1`", TraditionalForm]}, {0.,
FormBox["1", TraditionalForm]}, {-10.819778284410283`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-10.414313176302118`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-10.126631103850338`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.903487552536127,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.721165995742174,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.567015315914915,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.433483923290392,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-9.315700887634009,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-8.517193191416238,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-8.111728083308073,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.824046010856292,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.600902459542082,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.418580902748127,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.264430222920869,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.1308988302963465`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-7.013115794639964,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-6.214608098422191,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.809142990314028,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.521460917862246,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.298317366548036,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-5.115995809754082,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-4.961845129926823,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-4.8283137373023015`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-4.710530701645918,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-3.912023005428146,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-3.506557897319982,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-3.2188758248682006`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.995732273553991,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.8134107167600364`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.659260036932778,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.5257286443082556`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-2.407945608651872,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-1.6094379124341003`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-1.203972804325936,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.916290731874155,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.6931471805599453,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.5108256237659905,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.35667494393873245`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.2231435513142097,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {-0.10536051565782616`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}}}]], "Output",
CellChangeTimes->{
3.589580120484181*^9, 3.58958018211801*^9, 3.589580240758651*^9, {
3.589645695754599*^9, 3.589645723360744*^9}, {3.5896457647443457`*^9,
3.589645773293651*^9}, 3.589645837261777*^9, {3.5896577509698477`*^9,
3.589657760034939*^9}, {3.5896578150291843`*^9, 3.589657882590622*^9}, {
3.58965792601398*^9, 3.589657959555097*^9}, 3.589658146821867*^9,
3.5896612146172323`*^9, 3.5896617258338394`*^9, 3.589716495688237*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"\n", "\n",
RowBox[{
RowBox[{
RowBox[{"\[Tau]o", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"10", "^",
RowBox[{"(", "i", ")"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "1.5"}], ",", "4.5", ",", ".5"}], "}"}]}], "]"}]}],
";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"\[Tau]", "[", "u_", "]"}], "=",
RowBox[{"\[Tau]o", " ",
RowBox[{
RowBox[{"H", "[",
RowBox[{"0.1", ",", "u"}], "]"}], "/",
RowBox[{"H", "[",
RowBox[{"0.1", ",", "0"}], "]"}]}]}]}], ";"}], "\n",
RowBox[{
RowBox[{"\[Rho]", ":=",
RowBox[{
RowBox[{"Dimensions", "[",
RowBox[{"\[Tau]", "[", "u", "]"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], ";"}], "\n"}]}]], "Input",
CellChangeTimes->{{3.589579354388088*^9, 3.5895793573251953`*^9}, {
3.589579400671082*^9, 3.589579505467643*^9}, {3.589579540626087*^9,
3.589579987326639*^9}, {3.589580264023492*^9, 3.589580379336138*^9},
3.589580558216024*^9, 3.5895806175489397`*^9, {3.589580690867525*^9,
3.5895806969219217`*^9}, {3.589581249164138*^9, 3.589581252861906*^9}, {
3.589581386928384*^9, 3.589581412417366*^9}, {3.5895814439606247`*^9,
3.589581507108776*^9}, {3.589583710327944*^9, 3.589583712754196*^9}, {
3.589584137012683*^9, 3.5895841696744957`*^9}, {3.589584560545704*^9,
3.589584593815338*^9}, {3.5895846334659357`*^9, 3.5895846570954657`*^9}, {
3.589624673944418*^9, 3.589624677423544*^9}, 3.5896379486749268`*^9, {
3.589638474894953*^9, 3.58963857141469*^9}, {3.5896390747472467`*^9,
3.5896391198406487`*^9}, 3.5896391862738047`*^9, 3.5896392947541533`*^9,
3.5896394376569157`*^9}],
Cell[BoxData[{
RowBox[{
RowBox[{"plots3", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"Exp", "[",
RowBox[{"-",
RowBox[{
RowBox[{"\[Tau]", "[", "u", "]"}], "[",
RowBox[{"[", "i", "]"}], "]"}]}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "\[Rho]"}], "}"}]}], "]"}]}], ";"}], "\n",
RowBox[{"Plot", "[",
RowBox[{"plots3", ",",
RowBox[{"{",
RowBox[{"u", ",",
RowBox[{"-", "20"}], ",", "20"}], "}"}], ",",
RowBox[{"PlotLegends", "->",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"-", "1.5"}], "+", "i"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "6", ",", ".5"}], "}"}]}], "]"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Thick", ",",
RowBox[{"Hue", "[",
RowBox[{
RowBox[{"(",
RowBox[{"1.5", "+",
RowBox[{"Log10", "[",
RowBox[{"\[Tau]o", "[",
RowBox[{"[", "i", "]"}], "]"}], "]"}]}], ")"}], "/", "6"}],
"]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "\[Rho]"}], "}"}]}], "]"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "20"}], ",", "0"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"Exclusions", "\[Rule]", "None"}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Voigt Absoption Line\>\""}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<I\[Nu]/\!\(\*SubscriptBox[\(I\[Nu]\), \(o\)]\)\>\"", ",",
"\"\<u\>\""}], "}"}]}]}], "]"}], "\n"}], "Input",
CellChangeTimes->{{3.589639313986429*^9, 3.5896393520440807`*^9}, {
3.589639548558326*^9, 3.5896396338796787`*^9}, {3.5896397019070463`*^9,
3.589639741920433*^9}, {3.589645615496921*^9, 3.589645666257777*^9},
3.589658159141945*^9}],
Cell[BoxData[
RowBox[{
TemplateBox[{GraphicsBox[{{}, {}, {
Hue[0.],
Thickness[Large],
LineBox[CompressedData["
1:eJw12nc4l9//OHDjZe+9kk1eQkZK5D52ilKUkGyF3hIlJSKipEWUVaFktVRE
cp+yQiEhZY9sXrIzv+d8rt/vH67Hdb1wO/c5z/M8z+eRcTt9yJOBjo7OD33B
30OHrWY2NrTg91dfo+c3aMRQiPB8x6oWDHwdFom9n7dnsfifFpyUVg/Hltb1
Xzs9qwX99ty4gP05Np61d0gLPkvfdgqbVe3nZvhNC/qEqR3EvnfWZV94qhbk
+k0Tw86nD3xCt0MLHlG3zJ5DZvI01xRz0oRpw2fvziILtFedyryrAZ323PGe
QT5UkeKuXLcN7hg+I/kXOYS2+9SdAXWofM30Eg35/fkUn5cH1GCy5qd3k8iy
Hmeetu9Rg58fnH6OfdN6Ty+9kRoMsxJ9iu2mvHDYVlsNNt88eg+bo+Og4T9R
NRjelhCAfdyATdS4XxVWtU+rYjMyBVe1nVWFw78lH0/g8Yg/LL2evBUOey76
jyNf1OSxME/YCjcydp3Azm7+cuZOHPJEkBP2Or9+hezlrXBn4m8L7OcJsl7m
HlshNdBKFpszkZZ/R20rTDvd8X0Mue7+9R1yFSpwgemECrZ5+sf9eyao0KMv
oXoEefpm5ypliApbPuZ9wE4JW8n71EOFN/pLXmFPOOuy6P2gwmvDMAU7XvYd
qVpKhex8Z/ywu58VbBO4RoUaB2wEsYMKU/m75aiQaW3Efhg/f82FtkBHZSjR
HlX3BzlZM8g411YZDorZlGHHpQe86rZShjw1Qi+wAwJ9Yy2AMuzeFnwXe7eU
k4GUgjJs7Hhph90SBLLrprZACemevkFkBkWWIJkrW+CGRPfEAB7vqHtCjTlK
sDZE5ncfcgOxwBKcqQQLbKpqsYkVu2XpNCUoXedYgi0dINETcFsJ0h11eYDd
75yZIxykBEWOVh/G9tJ7pXfcWAlq5S5960X2m6l3nexShBmS1970IIe5ML7g
EFCETSV3D3Qhv2o0v9XCqQg1L37Sw+43iPNLZ1aEe5R7lbDNJIXU1ZcVYDpl
bKMTmfu34qtDfQpwKlz1JfZDm72FyS8VYEaxKzs2aXa3SMlSAX5iHyv8jTzz
rjVp2lQBTio3pmHLK4ifLyEU4P2rj6OxrzFm7dinpQDPJbA4YFvDt+/9xBXg
2MnBjV/Ivbrtpe9G5KFTWIU5Np2qFGl8VR7y3XCv+Yl8Sdjw+NUweXjlbGQB
9uKG21r1efR5o2t3saeas/X2+sjD/UuEI3ZHsNp76wPy0KTUfbINuahy92sn
MXn4UMWRE/u/Y8eyzj+Xg9Ih01otyCOmYUYl2XLwY6uLELaH+uO+5UdyUG7l
1cIPZAeGQamweDlYQKO9x96T45sWdV4Onj89oIctP3cx8a6hHNymfV6vGfn3
jeSY/FZZuHN2RqoJ+UeVdIFLoyxMbj+80Yj8deNZk1CtLLymcr8buzywSCy8
TBZyu7xNw850/JFvmyULKztsRLB9VLia1vzR5+tXmRqQV+rCRa05ZWHE4N2a
euQ5CutuJmZZaMzilok9ZXDbtXRDBvpLsYdi9xam58nPysBv5n0a2JUppfr/
fsnAGJanyXV4vvvMuWQ+k4FFh6xca5E3sZ/MnTOSgQ/aXBur8fwt/xonq49+
PkE6AzsjQMPfersMNH+THYCt2LGsU6AkAw9nsQhhqxfcrHTnlIEMf/jsqpCN
9r/paW6Vhq6GM40VyN7x60KvT0rDrX2s8RC5wMz9X7erNJQLpjliTy3XdHI6
SkNu6h0F7AD3u1knraThrsW1YhLPB215DWlNabjpWeivcuTNzxMebF6UgiZ7
07k/IvtupzJ1bJKCGu2Pdpfgn2cqeRbEIwUfTs2uv8fxrNV8Lz+DFDRrnyWx
Y8953rYY3gwVP88B7Lx3j8Xev94MlyZGDYqRR7eLqCWabYbGbYLUd8gndCh2
B/wlYbB70ftXeP0xJ/wbc5OEvh3ADzuoTSYt+rAk5JFzlcOODiL6Pu6ShJcn
neNe4vhTdNF3K5Mk9Ewk7F8g/9H5e5ktZRMsfV7blY/svqM7p6JCAraa5t7I
xus9Z8cRs2IJqJhtvBPbR+wuY22eBAT1JwafIvuvGB9vuCsBh9os9LAvkbkC
v5wl4J1HjgNZeH8yPxc2tSIOdYYHJDKQq+04bcW0xWE6w3mlVOTaL570aUri
MJjwrEjB81OXfLFZAnl72XHsZokANnkGcagU8CghGbmn52e5WpMY5AoXXbiP
vHQiS9nklBhUSXybdg+ZGrxrw++JKKQytnrdRIZd+6kDSaIw5L+J/jjkI8bu
h+2ui8LdCxLHsa9wx+UTfqJw8m3pwRvIv5502fHuFIX7nr9XvY7jx/fwV6/r
RaD9h+dFUfh970jsUCgXgR3m2nLYb9NymVNeicArlOe3IvF8P9F87EqiCLSO
9nG7grxjXY7NxlkEXharW72MPEStcZ2bEYZWLzOWL+LxutMRd/KPMJQVWLPF
5l+gFXf+FIbFAZteXEA2+CTKXVUmDGMNU44FIyfa+ZQmRgvDtMjteeeQTaK4
BHaIC8Pbmr0Uf7w+umwqLxgKwe/GounuyJqDmsst2kLwtSTDTze8/sb4tm3b
IgR/L3vzYA8tNqYOcQtB56SsEBc8fvyWgTadgpAmvdfQCbnQzERW9bwgnNGO
Dz2CbGwld/SajyB8KmaffhjvPzYMtwacBKHQrSMfbJEXXOC/ZBNBeJ+17+8h
ZL0Q/e/M/IJQxjtrzwH8919qh/cWCMCVYuEH5siHiwSK9B4LwEsiFQ/M8POU
zYwnJQjAtHjL+6bIrHWv7KwuCsAbEV03jZGtBreql5oLQHk34EIgt4kqdCf0
88P4kdUEHeThCCF9c1F+qLrtG50cMnvoS1oCOz+c2nCMl0FWC7bI6l3lg9cL
dKSl8XrxC2W/2McHB5qSt0kiMzv+aS/I44O8h+/IiuD4qv3uHP9uPvhTRtKA
Hcdf9QPKzup8cJH7xk1W5FPU0c58GT7IXmvZzozng7SkiSkzH7xmcMWZEY8X
11X+4EZeaPoiXXN1HeVHQ7Yvu1x54Vfnc78mkKP7ptyotrywcVduyxhyXuc1
4fNmvNCttb12BHmmuSyUV4UX9vhUZAwiM1y2eBA9wgOzR+spnciExuj3g1w8
8GTezdBa/PuUJHXH/3LDLN9h9hrkBsmDj6PauGEu/947lcjH2Uv8ih9xQ82Z
W1dI5EsD1zgkNbnhvZUUunfIpYlbTEeOcMFRgeJdD5FZHYfd6fW5YI+wuFEq
8hHp7CviMlxwu8uIwQP8fHly0HKcE/Yq/RaJR1aGm/VeX+aE06HK4Cpy0NUu
+zoPTvijhm0iArlyb1rwgAUnfDZiciMM2aVVrEhIkBOu/knMPI/8YExQ42IO
B9S9cE3FG3no5Y8DCTc5oJGvjrcnsva5eL+CAA54RT3qvity4wZPQbc+B6wv
d660R2YW4lAy/s4Of+g2HrJAPkfQS3Ius0GBNqUmeeTPFKin0MMG89hMuqSQ
eevCHAwq2WDYGfVmceQC29X7/rfYIDPVzp8XedB7kb9Vlg1Kdcp7La+h9aRe
pDHFwgar96qkzCGHz521ZplkhcVXvr2YQpa4PHNTt5gVHskMOdePfOjeJOvD
fayQ1e/NkS/Ij+0LlIq3scK0XZv8PiFPbfY1axJihed8eh1LkWNzRyIZelng
DsWtb/ORP5UPrHudZYGqYkFKccjcUZmS4fYscOlS86dI5GMWrvrJBiywoLNL
LgR56Uf3hXpWFki/srTdG3nb6K859XRmGEuwWxkhn51WVRaJYoZ1+2HiTuT3
ixFO6z7MkFn4eKoasiEztfrrTmaYlDfSLIafX+7ife8WJthxafOTiVUakURt
qLf+wASP8+Rc7UXu0JCl25nJBNmeE5wtyB6g7iSzPxM0VdBdLkE+5yS+K4uD
CdpJOU2EI5d6+PnFzlBg/LpV7Bnkdd/PmWd+UeAx/6gCV+Toiz4c4BkFptHk
fAByXUQ5oXSLAm0tTFbUkHmu85/lPkeB9B+EVjchP7hf2tlpRIEhVfQ6iys0
ovMhN1+lMgXGzam6DyBLZ7uZ5vNSIFBSGWlAzn3L/uJCNyN8JKzfk4Vc+t3h
svBFRlgpE/HBBHm9/cWbNRdGqJx7p5+KbNTLMDJozgjDgqmKvMj1U3nWb4QY
ISm0s/fnMpo/C+tRKasMcMexmyalyLZrh0oiBhjgpzNbM1KROzlWZKxfM8Cl
pDwJR2RpgQNHdjxggLMzk/K6yJ7iWbGbLzNAqj9YE0Ke2rJvdsKSAV4O0Jyq
/0cjNkxTK6+P0MNPVhmRSsgmVrQl/0Z6yA2ZS5eX0P5ka6x6tIgeHqgPO/YV
mdd9PFExih5qfJF77oNs60PUcfnSQ0dFUYMdyMlnEtbnDtLDoo18OgZk2XC9
ExVS9PD1mcmOu4tov4+5nZrHTA9jBHVbjiDn3RpovDtJB29LOX8UQ9ZKv7HT
5QMdzHjNLJm8gJ6ntINt7QgdfJj9WPjSPI14kfdUt0aPDs7vr1pSQhZNPe19
V5oOVpHK5U1zKF4vMsfva9kge59UXxdFzmtP+duTvkFqjWxzKJ5F54cStYNn
T2yQRflGmYeQFUKO8KYvr5MTVyhbwmbQ/HYcO61RuU6uWteqcCN/1Q9rrLq5
Tiawemml/EXze/3prSnpdXK6Sq716TRa7xHznMB8jbRR6V+JmULz1+36qRbe
NTKGnfHD3CTKB40lv578vUrSiT2MOIbMy2R64+5/q2Rm1ZfHmybQ+v/TPqaw
Y5V03nm96Ow4Wi/Vp/aW0q2SNrI79teM0Qjna/fYBhJWyO43ayGOoyg+eG/x
Pu+0Qip4azekjaB4tLfsC4fSCtlnlSfePozGh2MwRrt0mSzuTxfXH6IRq7e0
mKN7/5H+9P9YivppRNPpGk/xvH/k2OP80Io+GpFl7Vj1IvAf+TGcOlDbSyP2
8kdG/WT+R+aG16zDbvQ+E5sZlFWXSLpHMrKHf6P9KMjL7ePCInnih/hHxV80
AtgtfzoIF8lFtXzH6Z/ovCEqG3HRZpHs+/Z4t28rjdBJO7NRf2GB5Gkp4Fhr
xPslk7OL8QLZNvFWK66BRnQ5JZfPcS6Q3GMpb/i/0YgoqU+hko/nSd/JmHCm
OnS+yORd9aueI7W/7haNqED5YO7LJT6BWVJv9u6mb29R/OH2izTqnSGFWg9x
/C2kEX8DtnIHPp8hBfrp/bleo/xYP1euxXyGvLk/t0f9OYoXjZn7ky79JSfy
wl5KPqURs2MqFtu/0sjuujWZ4gQ0npFLj80CRsm0tZPNKv/RiBjLc0XPOEdJ
wfOMrnk+aL8SnqlnfTZC3jR5/1vpJPp/cscX6jqGSal0+SlpdxQ/GrstD5gO
kb439scI2aP5KVG1ZCc6QLb1iN07ZorGc9CQu6Swnzxald8/b0QjxF+Uy4lb
9ZNZQg5q9wCNkDR8v78zoo+0zD7i1KeH9veGIxaf2nrIzIC9l2s10XnW1fps
JEcP+cXNVixpG8oX5iwemYJucs10M81HjUZYiu+er83tJEf+kn/UqGg/9ZLL
aL70izzFHzdLlUXx/0zgtfh37aTCn01tVtI04uOlitOHpn6SDIlPk0I2o3wk
wd2g2bmNfHB0g/OfOI04+vCNQvyDVnI81uuUhRiNuJHLyHXoewv5+lfZ6lMR
tD+TWR3fjX6Qdww306IE0Xmpfvbz3ZBmMp8rfJxFgEbYtxnnHXz7nZzcbmX1
gA/lyxMDwd8VmkhLyX1O/dxovtBOQNmPDSSd15WENC4acYCZ9Xam2jfSWIaZ
8ORE+bDWnq2ZfHWk9EryqCw7jbhqMbIsE/mFfKKS6SjKhusl12oz5qpJD+tP
WyRZaYRN0JYHMl5VJK3DJFKDBcXfuC9eGT8ryD8Cl1IOM9MImayT22UsPpPa
gTkp15lQfCthpWSUQnKQmVbwjUIjuh8dfGp4tJzsq9+7KIP8/OtdI0O9D2SJ
QHhaNCONCPn3vQdsfk8OzfOWrTDQCAtF/lBA/45826wZEIEsYnNIHAy+Jg9P
VP4UQa7fkD99+dZz0kV8DwNJTyNO2j/NDbN9Rh5I/cl4HpnyRmEwVDyDVGGR
GyeQgZjl7mWYSAp6eVeIIU8/SPb4m3yFbDx17h4F+RLDvSqznd4EpS/FjQ5Z
LcW9RlDnNmGu+E6NC7lb7PUUB08a8XROcYGKbKPVXhZt+ISo2NlRaI9c9Mvu
SkxIHrFN0twxGZkLjstVOrwi+PT/6x9FJhLyoyvPvyFyFvt27EPPf8bLd7Ty
XhHRtdhk/hE5U1fFsup1CeFQx7hCoPFo4Rx/UdVQRuzJHNX5gczcm8dXPU4S
5tqPu4LQ+KXZb9/lHvWJ+Ji39o2Kxnu7caLvAH8FIfwidWAKuWHrfJp7RiUh
fGlg4TN6P3R07zbcy2uIaPnAkynofSaPCmoMWtYSDOnCJ9PR+9b8cdbNo6OO
oNrvynmJ5oNHtnaVx9I3wuznaU56NH/Wbt9bGIxuJILID6UEml/1+ssJhbFN
hE2xbHkcD/q8okOVplgz0dyd8cGaH8UPCfbugN5mYpOnrkoNmq9rPKULhc9+
ELzHRTr2CqF4/k9si5ZOK9GubvMtWJRG1Hz9Fatl007s9ws38ZJC7zP4d42j
yi9imZHtvpcMig/yHZQoxt9E8cjmoEA5FE9DOsNa3nQQV/I9uV8rof1EuSfg
nGAPUd1WXvICrd+TxgHPO8b6CYGX1b/2mKD4+vh8omTBKMH/xs7qgR+N0F9Y
fKMhOkaEGdyZJM7QCE7L4GbTqDFC9eUdhz+BaH4uBvP4HRsnCp29xLdcQPv7
/ovXyzknCfHCpyAyEu0nYeXlL3WmiYICoUaL+yg/zF3/VnJqmqAocXVlJ6P5
32LQVZE5TQwcZVxZTUXrnUqu/OT+S5gUnnyU8JhG/Gsld9IN/yXm+Ld/9Myl
EbtUPxVa358lpOr8AsJL0PtsaUsqr50lzO87pez+gMYzZOLi1tVZ4vLNq3Kz
ZSge1IoYs7rOEQzsEabmkEYIePr9IKnzRO/+/LSEapRvckYVqzrNEw7ZLYkC
X1A8fZOcmnp7nvjBFj97oxbNB/oq9/Nz88RkbOqK51e03tMk5tTKF4j5iynO
8Ds6jxlrtKdNLxAsR8ruUX7QiP4xszJ2uUUi17ctzrAFnbd3BkQNxSwSwyNu
7NltNKK65Yvgw4NLRJW/k6VEB8p/Q7qXOKKWiF17XLOUOmlEmexc54WiJWIw
Ru6Yahc6n/pLPT0s8Y9QJcoOKPTQiEecQdu5/vwjzrGX/alF+2nKmxtiISLL
hGPCi4msATRfHDLWRiyWidnUDfHgQRoRl/O1qvLFMmF4UdCOB+3HwSZyRy4F
rxCbPTx3rqL9O3B8566xvBXi7bkc9zy0v/vF7998tGuFKOuNjbNB+79n74Uh
LaNVgitI0/g+yg8OXWoKGudYI9q9q7WGUT5hJTfkYG+wRtz5SOr5o/xjT92K
QY3/GjHhlSA8j2wgqsSS1bpG8FyWK5ih0QhdUn+cl3WduMJHS/ZF+Yu216HG
sF3rhJtZHuxFVnkbet/h0Tqhz7EsAVG+o+iYEPLl+zoRo24VQUX5kCxDrrMO
ZYMQdmOOuIssat2ixO+9QTQYBD8/jPIphiChTg8xOsApm6NTgvIvB5e85vfa
dKBlR/AzPpSvFe4lajmt6cDfnPZJL2Q3Ke+it9F0IJT5hxsryvdK2dYLWDPp
QIdWbYUtMv9cfNaxj3Tgwwlm54fIn7+U3aHM0QFq/7dMZZQvir85GHOUhx5M
/lK84IsckD4UWkClByxhHn/ykGUDeH1tXemBw47RFlmUj0ZKeJg+aaAHp8WU
zP4hdzL901sapQel9qVMVJT/ak/f1LRkYgDjFmcXjyIPVhZLzekxgM9m29+9
RtZ/aSm8x44BBLJ0Z3Qg30vu40wLYAChHPP0FJRfm/hxLBvnMoAbL9WPWiOn
HX08fb+SAXj7b/icRZ4z2j483sMAdoWnUO8jPxFxbkkQZgR1l/wH25Epnwpf