forked from apple/darwin-xnu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kevent_continuous_time.c
258 lines (195 loc) · 8.97 KB
/
kevent_continuous_time.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#include <stdio.h>
#include <unistd.h>
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <sys/time.h>
#include <spawn.h>
#include <sys/wait.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <time.h>
#include <errno.h>
#include <sys/event.h>
#include <darwintest.h>
extern char **environ;
static mach_timebase_info_data_t tb_info;
static const uint64_t one_mil = 1000LL*1000LL;
#define tick_to_ns(ticks) (((ticks) * tb_info.numer) / (tb_info.denom))
#define tick_to_ms(ticks) (tick_to_ns(ticks)/one_mil)
#define ns_to_tick(ns) ((ns) * tb_info.denom / tb_info.numer)
#define ms_to_tick(ms) (ns_to_tick((ms) * one_mil))
static uint64_t time_delta_ms(void){
uint64_t abs_now = mach_absolute_time();
uint64_t cnt_now = mach_continuous_time();;
return tick_to_ms(cnt_now) - tick_to_ms(abs_now);
}
static int run_sleep_tests = 0;
static int trigger_sleep(int for_secs) {
if(!run_sleep_tests) return 0;
// sleep for 1 seconds each iteration
char buf[10];
snprintf(buf, 10, "%d", for_secs);
T_LOG("Sleepeing for %s seconds...", buf);
int spawn_ret, pid;
char *const pmset1_args[] = {"/usr/bin/pmset", "relative", "wake", buf, NULL};
T_ASSERT_POSIX_ZERO((spawn_ret = posix_spawn(&pid, pmset1_args[0], NULL, NULL, pmset1_args, environ)), NULL);
T_ASSERT_EQ(waitpid(pid, &spawn_ret, 0), pid, NULL);
T_ASSERT_EQ(spawn_ret, 0, NULL);
char *const pmset2_args[] = {"/usr/bin/pmset", "sleepnow", NULL};
T_ASSERT_POSIX_ZERO((spawn_ret = posix_spawn(&pid, pmset2_args[0], NULL, NULL, pmset2_args, environ)), NULL);
T_ASSERT_EQ(waitpid(pid, &spawn_ret, 0), pid, NULL);
T_ASSERT_EQ(spawn_ret, 0, NULL);
return 0;
}
// waits up to 30 seconds for system to sleep
// returns number of seconds it took for sleep to be entered
// or -1 if sleep wasn't accomplished
static int wait_for_sleep() {
if(!run_sleep_tests) return 0;
uint64_t before_diff = time_delta_ms();
for(int i = 0; i < 30; i++) {
uint64_t after_diff = time_delta_ms();
// on OSX, there's enough latency between calls to MCT and MAT
// when the system is going down for sleep for values to diverge a few ms
if(llabs((int64_t)before_diff - (int64_t)after_diff) > 2) {
return i + 1;
}
sleep(1);
T_LOG("waited %d seconds for sleep...", i+1);
}
return -1;
}
T_DECL(kevent_continuous_time_periodic_tick, "kevent(EVFILT_TIMER with NOTE_MACH_CONTINUOUS_TIME)", T_META_LTEPHASE(LTE_POSTINIT)){
mach_timebase_info(&tb_info);
int kq;
T_ASSERT_POSIX_SUCCESS((kq = kqueue()), NULL);
struct kevent64_s kev = {
.ident = 1,
.filter = EVFILT_TIMER,
.flags = EV_ADD | EV_RECEIPT,
.fflags = NOTE_SECONDS | NOTE_MACH_CONTINUOUS_TIME,
.data = 4,
};
T_LOG("EV_SET(&kev, 1, EVFILT_TIMER, EV_ADD, NOTE_SECONDS | NOTE_MACH_CONTINUOUS_TIME, 4, 0, 0, 0);");
T_ASSERT_EQ(kevent64(kq, &kev, 1, &kev, 1, 0, NULL), 1, NULL);
T_ASSERT_EQ(0ll, kev.data, "No error returned");
uint64_t abs_then = mach_absolute_time();
uint64_t cnt_then = mach_continuous_time();;
trigger_sleep(1);
int sleep_secs = wait_for_sleep();
T_WITH_ERRNO; T_ASSERT_EQ(kevent64(kq, NULL, 0, &kev, 1, 0, NULL), 1, "kevent() should have returned one event");
T_LOG("event = {.ident = %llx, .filter = %d, .flags = %d, .fflags = %d, .data = %lld, .udata = %lld}", kev.ident, kev.filter, kev.flags, kev.fflags, kev.data, kev.udata);
T_ASSERT_EQ(kev.flags & EV_ERROR, 0, "event should not have EV_ERROR set: %s", kev.flags & EV_ERROR ? strerror((int)kev.data) : "no error");
uint64_t abs_now = mach_absolute_time();
uint64_t cnt_now = mach_continuous_time();;
uint64_t ct_ms_progressed = tick_to_ms(cnt_now - cnt_then);
uint64_t ab_ms_progressed = tick_to_ms(abs_now - abs_then);
T_LOG("ct progressed %llu ms, abs progressed %llu ms", ct_ms_progressed, tick_to_ms(abs_now - abs_then));
if (run_sleep_tests) {
T_ASSERT_GT(llabs((int64_t)ct_ms_progressed - (int64_t)ab_ms_progressed), 500LL, "should have > 500ms difference between MCT and MAT");
} else {
T_ASSERT_LT(llabs((int64_t)ct_ms_progressed - (int64_t)ab_ms_progressed), 10LL, "should have < 10ms difference between MCT and MAT");
}
if (sleep_secs < 4) {
T_ASSERT_LT(llabs((int64_t)ct_ms_progressed - 4000), 100LL, "mach_continuous_time should progress ~4 seconds (+/- 100ms) between sleeps");
}
sleep(1);
kev = (struct kevent64_s){
.ident = 1,
.filter = EVFILT_TIMER,
.flags = EV_DELETE | EV_RECEIPT,
};
T_LOG("EV_SET(&kev, 1, EVFILT_TIMER, EV_DELETE, 0, 0, 0);");
T_ASSERT_EQ(kevent64(kq, &kev, 1, &kev, 1, 0, NULL), 1, NULL);
T_ASSERT_EQ(0ll, kev.data, "No error returned");
T_ASSERT_POSIX_ZERO(close(kq), NULL);
}
T_DECL(kevent_continuous_time_absolute, "kevent(EVFILT_TIMER with NOTE_MACH_CONTINUOUS_TIME and NOTE_ABSOLUTE)", T_META_LTEPHASE(LTE_POSTINIT)){
mach_timebase_info(&tb_info);
int kq;
T_ASSERT_POSIX_SUCCESS((kq = kqueue()), NULL);
struct timeval tv;
gettimeofday(&tv, NULL);
int64_t nowus = (int64_t)tv.tv_sec * USEC_PER_SEC + (int64_t)tv.tv_usec;
int64_t fire_at = (3*USEC_PER_SEC) + nowus;
uint64_t cnt_now = mach_continuous_time();
uint64_t cnt_then = cnt_now + ms_to_tick(3000);
T_LOG("currently is %llu, firing at %llu", nowus, fire_at);
struct kevent64_s kev = {
.ident = 2,
.filter = EVFILT_TIMER,
.flags = EV_ADD | EV_RECEIPT,
.fflags = NOTE_MACH_CONTINUOUS_TIME | NOTE_ABSOLUTE | NOTE_USECONDS,
.data = fire_at,
};
T_LOG("EV_SET(&kev, 2, EVFILT_TIMER, EV_ADD, NOTE_MACH_CONTINUOUS_TIME | NOTE_ABSOLUTE | NOTE_USECONDS, fire_at, 0);");
T_ASSERT_EQ(kevent64(kq, &kev, 1, &kev, 1, 0, NULL), 1, NULL);
T_ASSERT_EQ(0ll, kev.data, "No error returned");
T_LOG("testing NOTE_MACH_CONTINUOUS_TIME | NOTE_ABSOLUTE between sleep");
trigger_sleep(1);
struct timespec timeout = {
.tv_sec = 10,
.tv_nsec = 0,
};
struct kevent64_s event = {0};
T_ASSERT_EQ(kevent64(kq, NULL, 0, &event, 1, 0, &timeout), 1, "kevent() should have returned one event");
T_LOG("event = {.ident = %llx, .filter = %d, .flags = %d, .fflags = %d, .data = %lld, .udata = %lld}", event.ident, event.filter, event.flags, event.fflags, event.data, event.udata);
T_ASSERT_EQ(event.flags & EV_ERROR, 0, "event should not have EV_ERROR set: %s", event.flags & EV_ERROR ? strerror((int)event.data) : "no error");
uint64_t elapsed_ms = tick_to_ms(mach_continuous_time() - cnt_now);
int64_t missed_by = tick_to_ns((int64_t)mach_continuous_time() - (int64_t)cnt_then) / 1000000;
// ~1/2 second is about as good as we'll get
T_ASSERT_LT(llabs(missed_by), 500LL, "timer should pop 3 sec in the future, popped after %lldms", elapsed_ms);
T_ASSERT_EQ(event.data, 1LL, NULL);
T_ASSERT_EQ(event.ident, 2ULL, NULL);
// try getting a periodic tick out of kq
T_ASSERT_EQ(kevent64(kq, NULL, 0, &event, 1, 0, &timeout), 0, NULL);
T_ASSERT_EQ(event.flags & EV_ERROR, 0, "event should not have EV_ERROR set: %s", event.flags & EV_ERROR ? strerror((int)event.data) : "no error");
T_ASSERT_POSIX_ZERO(close(kq), NULL);
}
T_DECL(kevent_continuous_time_pops, "kevent(EVFILT_TIMER with NOTE_MACH_CONTINUOUS_TIME with multiple pops)", T_META_LTEPHASE(LTE_POSTINIT)){
// have to throttle rate at which pmset is called
sleep(2);
mach_timebase_info(&tb_info);
int kq;
T_ASSERT_POSIX_SUCCESS((kq = kqueue()), NULL);
// test that periodic ticks accumulate while asleep
struct kevent64_s kev = {
.ident = 3,
.filter = EVFILT_TIMER,
.flags = EV_ADD | EV_RECEIPT,
.fflags = NOTE_MACH_CONTINUOUS_TIME,
.data = 100,
};
T_LOG("EV_SET(&kev, 3, EVFILT_TIMER, EV_ADD, NOTE_MACH_CONTINUOUS_TIME, 100, 0);");
// wait for first pop, then sleep
T_ASSERT_EQ(kevent64(kq, &kev, 1, &kev, 1, 0, NULL), 1, NULL);
T_ASSERT_EQ(0ll, kev.data, "No error returned");
struct kevent64_s event = {0};
T_ASSERT_EQ(kevent64(kq, NULL, 0, &event, 1, 0, NULL), 1, "kevent() should have returned one event");
T_LOG("event = {.ident = %llx, .filter = %d, .flags = %d, .fflags = %d, .data = %lld, .udata = %llu}", event.ident, event.filter, event.flags, event.fflags, event.data, event.udata);
T_ASSERT_EQ(event.flags & EV_ERROR, 0, "should not have EV_ERROR set: %s", event.flags & EV_ERROR ? strerror((int)event.data) : "no error");
T_ASSERT_EQ(event.ident, 3ULL, NULL);
uint64_t cnt_then = mach_continuous_time();
trigger_sleep(2);
int sleep_secs = 0;
if(run_sleep_tests) {
sleep_secs = wait_for_sleep();
}
else {
// simulate 2 seconds of system "sleep"
sleep(2);
}
uint64_t cnt_now = mach_continuous_time();
uint64_t ms_elapsed = tick_to_ms(cnt_now - cnt_then);
if(run_sleep_tests) {
T_ASSERT_LT(llabs((int64_t)ms_elapsed - 2000LL), 500LL, "slept for %llums, expected 2000ms (astris is connected?)", ms_elapsed);
}
T_ASSERT_EQ(kevent64(kq, NULL, 0, &event, 1, 0, NULL), 1, "kevent() should have returned one event");
T_LOG("event = {.ident = %llx, .filter = %d, .flags = %d, .fflags = %d, .data = %lld, .udata = %llu}", event.ident, event.filter, event.flags, event.fflags, event.data, event.udata);
T_ASSERT_EQ(event.ident, 3ULL, NULL);
uint64_t expected_pops = ms_elapsed / 100;
uint64_t got_pops = (uint64_t)event.data;
T_ASSERT_GE(got_pops, expected_pops - 1, "tracking pops while asleep");
T_ASSERT_POSIX_ZERO(close(kq), NULL);
}