forked from ArduPilot/ardupilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBlimp.cpp
304 lines (263 loc) · 9.64 KB
/
Blimp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Blimp.h"
#define FORCE_VERSION_H_INCLUDE
#include "version.h"
#undef FORCE_VERSION_H_INCLUDE
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
#define SCHED_TASK(func, rate_hz, max_time_micros, priority) SCHED_TASK_CLASS(Blimp, &blimp, func, rate_hz, max_time_micros, priority)
#define FAST_TASK(func) FAST_TASK_CLASS(Blimp, &blimp, func)
/*
scheduler table - all tasks should be listed here.
All entries in this table must be ordered by priority.
This table is interleaved with the table in AP_Vehicle to determine
the order in which tasks are run. Convenience methods SCHED_TASK
and SCHED_TASK_CLASS are provided to build entries in this structure:
SCHED_TASK arguments:
- name of static function to call
- rate (in Hertz) at which the function should be called
- expected time (in MicroSeconds) that the function should take to run
- priority (0 through 255, lower number meaning higher priority)
SCHED_TASK_CLASS arguments:
- class name of method to be called
- instance on which to call the method
- method to call on that instance
- rate (in Hertz) at which the method should be called
- expected time (in MicroSeconds) that the method should take to run
- priority (0 through 255, lower number meaning higher priority)
*/
const AP_Scheduler::Task Blimp::scheduler_tasks[] = {
// update INS immediately to get current gyro data populated
FAST_TASK_CLASS(AP_InertialSensor, &blimp.ins, update),
// send outputs to the motors library immediately
FAST_TASK(motors_output),
// run EKF state estimator (expensive)
FAST_TASK(read_AHRS),
// Inertial Nav
FAST_TASK(read_inertia),
// check if ekf has reset target heading or position
FAST_TASK(check_ekf_reset),
// run the attitude controllers
FAST_TASK(update_flight_mode),
// update home from EKF if necessary
FAST_TASK(update_home_from_EKF),
SCHED_TASK(rc_loop, 100, 130, 3),
SCHED_TASK(throttle_loop, 50, 75, 6),
SCHED_TASK_CLASS(AP_GPS, &blimp.gps, update, 50, 200, 9),
SCHED_TASK(update_batt_compass, 10, 120, 12),
SCHED_TASK_CLASS(RC_Channels, (RC_Channels*)&blimp.g2.rc_channels, read_aux_all, 10, 50, 15),
SCHED_TASK(arm_motors_check, 10, 50, 18),
SCHED_TASK(update_altitude, 10, 100, 21),
SCHED_TASK(three_hz_loop, 3, 75, 24),
#if AP_SERVORELAYEVENTS_ENABLED
SCHED_TASK_CLASS(AP_ServoRelayEvents, &blimp.ServoRelayEvents, update_events, 50, 75, 27),
#endif
#if HAL_LOGGING_ENABLED
SCHED_TASK(full_rate_logging, 50, 50, 33),
#endif
SCHED_TASK_CLASS(AP_Notify, &blimp.notify, update, 50, 90, 36),
SCHED_TASK(one_hz_loop, 1, 100, 39),
SCHED_TASK(ekf_check, 10, 75, 42),
SCHED_TASK(check_vibration, 10, 50, 45),
SCHED_TASK(gpsglitch_check, 10, 50, 48),
SCHED_TASK_CLASS(GCS, (GCS*)&blimp._gcs, update_receive, 400, 180, 51),
SCHED_TASK_CLASS(GCS, (GCS*)&blimp._gcs, update_send, 400, 550, 54),
#if HAL_LOGGING_ENABLED
SCHED_TASK(ten_hz_logging_loop, 10, 350, 57),
SCHED_TASK(twentyfive_hz_logging, 25, 110, 60),
SCHED_TASK_CLASS(AP_Logger, &blimp.logger, periodic_tasks, 400, 300, 63),
#endif
SCHED_TASK_CLASS(AP_InertialSensor, &blimp.ins, periodic, 400, 50, 66),
#if HAL_LOGGING_ENABLED
SCHED_TASK_CLASS(AP_Scheduler, &blimp.scheduler, update_logging, 0.1, 75, 69),
#endif
};
void Blimp::get_scheduler_tasks(const AP_Scheduler::Task *&tasks,
uint8_t &task_count,
uint32_t &log_bit)
{
tasks = &scheduler_tasks[0];
task_count = ARRAY_SIZE(scheduler_tasks);
log_bit = MASK_LOG_PM;
}
constexpr int8_t Blimp::_failsafe_priorities[4];
// rc_loops - reads user input from transmitter/receiver
// called at 100hz
void Blimp::rc_loop()
{
// Read radio and 3-position switch on radio
// -----------------------------------------
read_radio();
rc().read_mode_switch();
}
// throttle_loop - should be run at 50 hz
// ---------------------------
void Blimp::throttle_loop()
{
// check auto_armed status
update_auto_armed();
}
// update_batt_compass - read battery and compass
// should be called at 10hz
void Blimp::update_batt_compass(void)
{
// read battery before compass because it may be used for motor interference compensation
battery.read();
if (AP::compass().available()) {
// update compass with throttle value - used for compassmot
compass.set_voltage(battery.voltage());
compass.read();
}
}
#if HAL_LOGGING_ENABLED
// Full rate logging of attitude, rate and pid loops
void Blimp::full_rate_logging()
{
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
}
if (should_log(MASK_LOG_PID)) {
Log_Write_PIDs();
}
}
// ten_hz_logging_loop
// should be run at 10hz
void Blimp::ten_hz_logging_loop()
{
// log attitude data if we're not already logging at the higher rate
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
}
// log EKF attitude data
if (should_log(MASK_LOG_ATTITUDE_MED) || should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_EKF_POS();
}
if (should_log(MASK_LOG_RCIN)) {
logger.Write_RCIN();
#if AP_RSSI_ENABLED
if (rssi.enabled()) {
logger.Write_RSSI();
}
#endif
}
if (should_log(MASK_LOG_RCOUT)) {
logger.Write_RCOUT();
}
if (should_log(MASK_LOG_IMU) || should_log(MASK_LOG_IMU_FAST) || should_log(MASK_LOG_IMU_RAW)) {
AP::ins().Write_Vibration();
}
}
// twentyfive_hz_logging - should be run at 25hz
void Blimp::twentyfive_hz_logging()
{
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_EKF_POS();
}
if (should_log(MASK_LOG_IMU)) {
AP::ins().Write_IMU();
}
}
#endif // HAL_LOGGING_ENABLED
// three_hz_loop - 3.3hz loop
void Blimp::three_hz_loop()
{
// check if we've lost contact with the ground station
failsafe_gcs_check();
}
// one_hz_loop - runs at 1Hz
void Blimp::one_hz_loop()
{
#if HAL_LOGGING_ENABLED
if (should_log(MASK_LOG_ANY)) {
Log_Write_Data(LogDataID::AP_STATE, ap.value);
}
#endif
// update assigned functions and enable auxiliary servos
SRV_Channels::enable_aux_servos();
AP_Notify::flags.flying = !ap.land_complete;
blimp.pid_pos_yaw.set_notch_sample_rate(AP::scheduler().get_filtered_loop_rate_hz());
}
void Blimp::read_AHRS(void)
{
// we tell AHRS to skip INS update as we have already done it in fast_loop()
ahrs.update(true);
IGNORE_RETURN(ahrs.get_velocity_NED(vel_ned));
IGNORE_RETURN(ahrs.get_relative_position_NED_origin(pos_ned));
vel_yaw = ahrs.get_yaw_rate_earth();
Vector2f vel_xy_filtd = vel_xy_filter.apply({vel_ned.x, vel_ned.y});
vel_ned_filtd = {vel_xy_filtd.x, vel_xy_filtd.y, vel_z_filter.apply(vel_ned.z)};
vel_yaw_filtd = vel_yaw_filter.apply(vel_yaw);
#if HAL_LOGGING_ENABLED
AP::logger().WriteStreaming("VNF", "TimeUS,X,XF,Y,YF,Z,ZF,Yaw,YawF,PX,PY,PZ,PYaw", "Qffffffffffff",
AP_HAL::micros64(),
vel_ned.x,
vel_ned_filtd.x,
vel_ned.y,
vel_ned_filtd.y,
vel_ned.z,
vel_ned_filtd.z,
vel_yaw,
vel_yaw_filtd,
pos_ned.x,
pos_ned.y,
pos_ned.z,
blimp.ahrs.get_yaw());
#endif
}
// read baro and log control tuning
void Blimp::update_altitude()
{
// read in baro altitude
read_barometer();
#if HAL_LOGGING_ENABLED
if (should_log(MASK_LOG_CTUN)) {
#if AP_INERTIALSENSOR_HARMONICNOTCH_ENABLED
AP::ins().write_notch_log_messages();
#endif
#if HAL_GYROFFT_ENABLED
gyro_fft.write_log_messages();
#endif
}
#endif
}
//Conversions are in 2D so that up remains up in world frame when the blimp is not exactly level.
void Blimp::rotate_BF_to_NE(Vector2f &vec)
{
float ne_x = vec.x*ahrs.cos_yaw() - vec.y*ahrs.sin_yaw();
float ne_y = vec.x*ahrs.sin_yaw() + vec.y*ahrs.cos_yaw();
vec.x = ne_x;
vec.y = ne_y;
}
void Blimp::rotate_NE_to_BF(Vector2f &vec)
{
float bf_x = vec.x*ahrs.cos_yaw() + vec.y*ahrs.sin_yaw();
float bf_y = -vec.x*ahrs.sin_yaw() + vec.y*ahrs.cos_yaw();
vec.x = bf_x;
vec.y = bf_y;
}
/*
constructor for main Blimp class
*/
Blimp::Blimp(void)
:
flight_modes(&g.flight_mode1),
control_mode(Mode::Number::MANUAL),
rc_throttle_control_in_filter(1.0f),
inertial_nav(ahrs),
param_loader(var_info),
flightmode(&mode_manual)
{
}
Blimp blimp;
AP_Vehicle& vehicle = blimp;
AP_HAL_MAIN_CALLBACKS(&blimp);