Skip to content

A Large-scale Chinese Short-Text Conversation Dataset and Chinese pre-training dialog models

License

Notifications You must be signed in to change notification settings

joytianya/CDial-GPT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CDial-GPT

  • This project provides a large-scale cleaned Chinese conversation dataset and a Chinese GPT model pre-trained on this dataset. Please refer to our paper for more details.

  • Our code used for the pre-training is adapted from the TransferTransfo model based on the Transformers library. The codes used for both pre-training and fine-tuning are provided in this repository.

  • 本项目提供了一个大规模的经过系统清洗的中文对话数据集,并提供在此数据集上的对话预训练模型,更多信息可参考我们的论文

  • 本项目代码修改自TransferTransfo,使用了HuggingFace Pytorch版的Transformers库, 可用于预训练与微调。

Contents

We present a Large-scale Cleaned Chinese Conversation corpus (LCCC) containing: LCCC-base and LCCC-large. A rigorous data cleaning pipeline is designed to ensure the quality of the corpus. This pipeline involves a set of rules and several classifier-based filters. Noises such as offensive or sensitive words, special symbols, emojis, grammatically incorrect sentences, and incoherent conversations are filtered.

The statistic of our corpus is presented below. Dialogues with only two utterances are regarded as "Single-turn", and dialogues with more than three utterances are regarded as "Multi-turn". The vocabulary size is calculated in word-level, and Jieba is used to tokenize each utterance to words.

LCCC-base Single-turn Multi-turn
Sessions 3,354,382 3,466,607
Utterances 6,708,554 13,365,268
Characters 68,559,727 163,690,614
Vocabulary 372,063 666,931
Avg. words per utterance 6.79 8.32
Avg. utterances per session 2 3.86

Note that LCCC-base is cleaned using more strict rules compared to LCCC-large. A tokenized version of LCCC-base is also provided.

LCCC-large Single-turn Multi-turn
Sessions 7,273,804 4,733,955
Utterances 14,547,608 18,341,167
Characters 162,301,556 217,776,649
Vocabulary 662,514 690,027
Avg. words per utterance 7.45 8.14
Avg. utterances per session 2 3.87

The raw dialogues for LCCC-base originate from a Weibo Corpus that we crawled from Weibo, and the raw dialogues for LCCC-large is built by combining several conversation datasets in addition to the Weibo Corpus:

Dataset Sessions Sample
Weibo Corpus 79M Q:火锅我在重庆成都吃了七八顿火锅 A: 哈哈哈哈!那我的嘴巴 可能要烂掉!
PTT Gossiping Corpus 0.4M Q:为什么乡民总是欺负国高中生呢QQ A:如果以为选好科系就会变成比尔盖兹那不如退学吧
Subtitle Corpus 2.74M Q:京戏里头的人都是不自由的 A:他们让人拿笼子给套起来了了
Xiaohuangji Corpus 0.45M Q:你谈过恋爱么 A:谈过,哎,别提了,伤心..
Tieba Corpus 2.32M Q:前排,鲁迷们都起床了吧 A:标题说助攻,但是看了那球,真是活生生的讽刺了
Qingyun Corpus 0.1M Q:看来你很爱钱 A:噢是吗?那么你也差不多了
Douban Conversation Corpus 0.5M Q:看原版英文电影学纯正英语 A:大爱老友记反复看了好多次 了 Q:一样光盘都快被我看花了 A:那你现在的英语应该不错了
E-commerical Conversation Corpus 0.5M Q:这个会不会聚划算 A:暂时没有哦 Q:后期会不会有 A:不一定哦亲多多关注我们哦
Chinese Chat Corpus 0.5M Q: 我今天腿都废了,你们过节,我搬砖 A: 辛苦啊,圣诞节还去赚大钱了加油 Q: 毕竟是没男朋友的人,什么节都是一样的

Models

We also present a series of Chinese GPT model that are first pre-trained on a Chinese novel dataset and then post-trained on our LCCC dataset.

Similar to TransferTransfo, we concatenate all dialogue histories into one context sentence, and use this sentence to predict the response. The input of our model consists of word embedding, speaker embedding, and positional embedding of each word.

Input representation

Models Parameter Size Pre-training Dataset Description
GPTNovel 95.5M Chinese Novel A GPT model pre-trained on Chinese Novel dataset (1.3B words, note that we do not provide the detail of this model)
CDial-GPTLCCC-base 95.5M LCCC-base A GPT model post-trained on LCCC-base dataset from GPTNovel
CDial-GPT2LCCC-base 95.5M LCCC-base A GPT2 model post-trained on LCCC-base dataset from GPTNovel
CDial-GPTLCCC-large 95.5M LCCC-large A GPT model post-trained on LCCC-large dataset from GPTNovel

Installation

Install from the source codes:

git clone https://github.com/lemon234071/GPT-Chinese.git
cd GPT-Chinese
pip install -r requirements.txt 

Quick Start

Step 1: Prepare the data for fine-tuning (E.g., STC dataset or "data/toy_data.json" in our respository) and the pre-trianed model:

wget https://coai-dataset.oss-cn-beijing.aliyuncs.com/STC-corpus.zip # Download the STC dataset and unzip into "data_path" dir (fine-tuning on STC)
wget https://coai-dataset.oss-cn-beijing.aliyuncs.com/GPT_LCCC-large.zip # Download the GPT<sub>LCCC-large</sub> weights file and unzip into "model_checkpoint" dir

Note: If the computer's memory is insufficient, you can process the file into txt format, use the "train_path" to load data in a distributed manner (the function we adapted from Internet), and you need to leave "data_path" empty.

Step 2: Train the model

python train.py --pretrained --model_checkpoint ./models/ --data_path data/STC.json  # Single GPU training
python -m torch.distributed.launch --nproc_per_node=8 train.py --pretrained --model_checkpoint ./models/ --data_path data/STC.json  # Training on 8 GPUs

Step 3: Inference mode

python infer.py --model_checkpoint ./models/ --datapath data/STC_test.json --out_path STC_result.txt  # Do Inference on a corpus
python interact.py --model_checkpoint ./models/  # Interact on the terminal

Training Arguments

Arguments Type Default value Description
model_checkpoint str "" Path or URL of model files (Directory of pre-training model and config/vocab files)
pretrained bool False If False, then train the model from scratch
data_path str "" Path of the dataset
dataset_cache str default="dataset_cache" Path or url of the dataset cache
train_path str "" Path of the training set for distributed dataset
valid_path str "" Path of the validation set for distributed dataset
log_file str "" Output logs to a file under this path
num_workers int 1 Number of subprocesses for data loading
n_epochs int 70 Number of training epochs
train_batch_size int 8 Batch size for training
valid_batch_size int 8 Batch size for validation
max_history int 15 Number of previous exchanges to keep in history
scheduler str "noam" Method of optimizer
n_emd int 768 Number of n_emd in config file (for noam)
eval_before_start bool False If true, start evaluation before training
warmup_steps int 5000 Warm up steps
valid_steps int 0 Perform validation every X steps, if is not 0
gradient_accumulation_steps int 64 Accumulate gradients on several steps
max_norm float 1.0 Clipping gradient norm
device str "cuda" if torch.cuda.is_available() else "cpu" Device (cuda or cpu)
fp16 str "" Set to O0, O1, O2 or O3 for fp16 training (see apex documentation)
local_rank int -1 Local rank for distributed training (-1: not distributed)

Evaluation is performed on results generated by models fine-tuned on STC dataset. All responses are generated using the Nucleus Sampling scheme with a threshold 0.9 and temperature 0.7.

Automatic Evaluation

Models Model Size PPL BLEU-2 BLEU-4 Dist-1 Dist-2 Greedy Matching Embedding Average
Attn-Seq2seq 73M 34.20 3.93 0.90 8.5 11.91 65.84 83.38
Transformer 113M 22.10 6.72 3.14 8.8 13.97 66.06 83.55
GPT2-chitchat 88M - 2.28 0.54 10.3 16.25 61.54 78.94
GPTNovel 95.5M 21.27 5.96 2.71 8.0 11.72 66.12 83.34
GPTLCCC-base 95.5M 18.38 6.48 3.08 8.3 12.68 66.21 83.54
GPT2LCCC-base 95.5M 22.76 5.69 2.50 7.7 10.87 66.24 83.46
GPTLCCC-large 95.5M 18.23 6.63 3.20 8.3 12.71 66.25 83.63

Human Evaluation

We also employed 3 crowd-sourced annotators to evaluate 200 samples of each model about fluency, relevance, and diversity based on a 2/1/0 score schema. Refer to our paper for more details.

Models +2 +1 +0 Kappa
Attn-Seq2Seq 27.1% 21.4% 51.4% 0.4544
Transformer 42.4% 23.6% 34.0% 0.4429
GPT2-chitchat 24.3% 19,1% 56.6% 0.3941
GPTLCCC-base 46.7% 21.8% 31.5% 0.3954
GPTLCCC-large 48.6% 24.5% 27.0% 0.4203

Toxic Generation Statistics

We randomly select 1000 generated samples, and make a statistic of toxic generation:

Repetition Dirty word Other Bad Cases
23 9 2

Case study of GPTLCCC-large

Single-turn generated examples from STC dataset (fine-tuned on STC):

Post Response
这 居 然 是 北 京 不 是 哈 尔 滨 。 哈 尔 滨 的 天 气 好 像 比 北 京 好 点 , 我 这 里 就 是 小 雨 , 白 天 都 是 大 风
运 营 商 校 园 广 告 大 P K , 太 欢 乐 了 ! 哈 哈 哈 。 我 以 为 是 马 云 的 广 告 。
D e l s a S p o s a 糖 果 色 系 列 婚 纱 , 粉 蓝 红 紫 , 俏 皮 又 清 新 , 你 喜 欢 吗 ? 最 后 一 件 太 美 了 , 美 的 不 像 话 !

Multi-turn generated examples using the interactive script:

Roel Response
User 别爱我没结果
Bot 没 结 果 的 爱 是 多 么 的 痛 。
User 但是爱过就可以了
Bot 有 时 候 ,爱 情 就 是 一 场 游 戏 。
User 输的总是我
Bot 我 爱 你 , 就 像 我 爱 你 一 样 。
User 你可拉到吧
Bot 你 可 拉 到 吧 。
User 别学我说话
Bot 我 说 话 就 是 你 不 行 。
User 逼我动手是吧
Bot 不 , 是 逼 你 动 口 是 吧

Authors

Yida Wang, Pei Ke, Yinhe Zheng, Kaili Huang, Yong Jiang, Xiaoyan Zhu, Minlie Huang

Disclaimer

The LCCC dataset and the pre-trained models aim to facilitate the research for conversation generation. The LCCC dataset provided in this repository originates from various sources. Although a rigorous cleaning process has been carried out, there is no guarantee that all the inappropriate contents have been completely filtered out. All the contents contained in this dataset does not represent the authors' opinion. This repository contains only part of the modeling machinery needed to actually produce a dialogue model. The decoding script provided in this repository is only for the research purpose. We are not responsible for any contents generated using our model.

Citation

Please kindly cite our paper if you use the datasets or models in your research:

@inproceedings{wang2020chinese,
  title={A Large-Scale Chinese Short-Text Conversation Dataset},
  author={Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},
  booktitle={NLPCC},
  year={2020},
  url={https://arxiv.org/abs/2008.03946}
}

About

A Large-scale Chinese Short-Text Conversation Dataset and Chinese pre-training dialog models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%