forked from stanfordnlp/treelstm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_data.lua
228 lines (201 loc) · 5.41 KB
/
read_data.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
--[[
Functions for loading data from disk.
--]]
function treelstm.read_embedding(vocab_path, emb_path)
local vocab = treelstm.Vocab(vocab_path)
local embedding = torch.load(emb_path)
return vocab, embedding
end
function treelstm.read_sentences(path, vocab)
local sentences = {}
local file = io.open(path, 'r')
local line
while true do
line = file:read()
if line == nil then break end
local tokens = stringx.split(line)
local len = #tokens
local sent = torch.IntTensor(len)
for i = 1, len do
local token = tokens[i]
sent[i] = vocab:index(token)
end
sentences[#sentences + 1] = sent
end
file:close()
return sentences
end
function treelstm.read_trees(parent_path, label_path)
local parent_file = io.open(parent_path, 'r')
local label_file
if label_path ~= nil then label_file = io.open(label_path, 'r') end
local count = 0
local trees = {}
while true do
local parents = parent_file:read()
if parents == nil then break end
parents = stringx.split(parents)
for i, p in ipairs(parents) do
parents[i] = tonumber(p)
end
local labels
if label_file ~= nil then
labels = stringx.split(label_file:read())
for i, l in ipairs(labels) do
-- ignore unlabeled nodes
if l == '#' then
labels[i] = nil
else
labels[i] = tonumber(l)
end
end
end
count = count + 1
trees[count] = treelstm.read_tree(parents, labels)
end
parent_file:close()
return trees
end
function treelstm.read_tree(parents, labels)
local size = #parents
local trees = {}
if labels == nil then labels = {} end
local root
for i = 1, size do
if not trees[i] and parents[i] ~= -1 then
local idx = i
local prev = nil
while true do
local parent = parents[idx]
if parent == -1 then
break
end
local tree = treelstm.Tree()
if prev ~= nil then
tree:add_child(prev)
end
trees[idx] = tree
tree.idx = idx
tree.gold_label = labels[idx]
if trees[parent] ~= nil then
trees[parent]:add_child(tree)
break
elseif parent == 0 then
root = tree
break
else
prev = tree
idx = parent
end
end
end
end
-- index leaves (only meaningful for constituency trees)
local leaf_idx = 1
for i = 1, size do
local tree = trees[i]
if tree ~= nil and tree.num_children == 0 then
tree.leaf_idx = leaf_idx
leaf_idx = leaf_idx + 1
end
end
return root
end
--[[
Semantic Relatedness
--]]
function treelstm.read_relatedness_dataset(dir, vocab, constituency)
local dataset = {}
dataset.vocab = vocab
if constituency then
dataset.ltrees = treelstm.read_trees(dir .. 'a.cparents')
dataset.rtrees = treelstm.read_trees(dir .. 'b.cparents')
else
dataset.ltrees = treelstm.read_trees(dir .. 'a.parents')
dataset.rtrees = treelstm.read_trees(dir .. 'b.parents')
end
dataset.lsents = treelstm.read_sentences(dir .. 'a.toks', vocab)
dataset.rsents = treelstm.read_sentences(dir .. 'b.toks', vocab)
dataset.size = #dataset.ltrees
local id_file = torch.DiskFile(dir .. 'id.txt')
local sim_file = torch.DiskFile(dir .. 'sim.txt')
dataset.ids = torch.IntTensor(dataset.size)
dataset.labels = torch.Tensor(dataset.size)
for i = 1, dataset.size do
dataset.ids[i] = id_file:readInt()
dataset.labels[i] = 0.25 * (sim_file:readDouble() - 1)
end
id_file:close()
sim_file:close()
return dataset
end
--[[
Sentiment
--]]
function treelstm.read_sentiment_dataset(dir, vocab, fine_grained, dependency)
local dataset = {}
dataset.vocab = vocab
dataset.fine_grained = fine_grained
local trees
if dependency then
trees = treelstm.read_trees(dir .. 'dparents.txt', dir .. 'dlabels.txt')
else
trees = treelstm.read_trees(dir .. 'parents.txt', dir .. 'labels.txt')
for _, tree in ipairs(trees) do
set_spans(tree)
end
end
local sents = treelstm.read_sentences(dir .. 'sents.txt', vocab)
if not fine_grained then
dataset.trees = {}
dataset.sents = {}
for i = 1, #trees do
if trees[i].gold_label ~= 0 then
table.insert(dataset.trees, trees[i])
table.insert(dataset.sents, sents[i])
end
end
else
dataset.trees = trees
dataset.sents = sents
end
dataset.size = #dataset.trees
dataset.labels = torch.Tensor(dataset.size)
for i = 1, dataset.size do
remap_labels(dataset.trees[i], fine_grained)
dataset.labels[i] = dataset.trees[i].gold_label
end
return dataset
end
function set_spans(tree)
if tree.num_children == 0 then
tree.lo, tree.hi = tree.leaf_idx, tree.leaf_idx
return
end
for i = 1, tree.num_children do
set_spans(tree.children[i])
end
tree.lo, tree.hi = tree.children[1].lo, tree.children[1].hi
for i = 2, tree.num_children do
tree.lo = math.min(tree.lo, tree.children[i].lo)
tree.hi = math.max(tree.hi, tree.children[i].hi)
end
end
function remap_labels(tree, fine_grained)
if tree.gold_label ~= nil then
if fine_grained then
tree.gold_label = tree.gold_label + 3
else
if tree.gold_label < 0 then
tree.gold_label = 1
elseif tree.gold_label == 0 then
tree.gold_label = 2
else
tree.gold_label = 3
end
end
end
for i = 1, tree.num_children do
remap_labels(tree.children[i], fine_grained)
end
end