The {fmt} library API consists of the following parts:
- :ref:`fmt/core.h <core-api>`: the core API providing argument handling facilities and a lightweight subset of formatting functions
- :ref:`fmt/format.h <format-api>`: the full format API providing compile-time format string checks, wide string, output iterator and user-defined type support
- :ref:`fmt/ranges.h <ranges-api>`: additional formatting support for ranges and tuples
- :ref:`fmt/chrono.h <chrono-api>`: date and time formatting
- :ref:`fmt/compile.h <compile-api>`: format string compilation
- :ref:`fmt/color.h <color-api>`: terminal color and text style
- :ref:`fmt/os.h <os-api>`: system APIs
- :ref:`fmt/ostream.h <ostream-api>`:
std::ostream
support - :ref:`fmt/printf.h <printf-api>`:
printf
formatting
All functions and types provided by the library reside in namespace fmt
and
macros have prefix FMT_
.
fmt/core.h
defines the core API which provides argument handling facilities
and a lightweight subset of formatting functions. In the header-only mode
include fmt/format.h
instead of fmt/core.h
.
The following functions use :ref:`format string syntax <syntax>` similar to that of Python's str.format. They take format_str and args as arguments.
format_str is a format string that contains literal text and replacement
fields surrounded by braces {}
. The fields are replaced with formatted
arguments in the resulting string. A function taking format_str doesn't
participate in an overload resolution if the latter is not a string.
args is an argument list representing objects to be formatted.
.. doxygenfunction:: format(const S &format_str, Args&&... args)
.. doxygenfunction:: vformat(const S &format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args)
.. doxygenfunction:: format_to(OutputIt out, const S&, const Args&... args)
.. doxygenfunction:: format_to_n(OutputIt out, size_t n, const S&, const Args&... args)
.. doxygenfunction:: formatted_size(string_view format_str, Args&&... args)
.. doxygenstruct:: fmt::format_to_n_result :members:
.. doxygenfunction:: fmt::print(const S &format_str, Args&&... args)
.. doxygenfunction:: vprint(string_view, format_args)
.. doxygenfunction:: print(std::FILE *f, const S &format_str, Args&&... args)
.. doxygenfunction:: vprint(std::FILE*, string_view, format_args)
.. doxygenfunction:: fmt::arg(const S&, const T&)
Named arguments are not supported in compile-time checks at the moment.
You can create your own formatting function with compile-time checks and small binary footprint, for example (https://godbolt.org/z/oba4Mc):
#include <fmt/format.h>
void vlog(const char* file, int line, fmt::string_view format,
fmt::format_args args) {
fmt::print("{}: {}: ", file, line);
fmt::vprint(format, args);
}
template <typename S, typename... Args>
void log(const char* file, int line, const S& format, Args&&... args) {
vlog(file, line, format,
fmt::make_args_checked<Args...>(format, args...));
}
#define MY_LOG(format, ...) \
log(__FILE__, __LINE__, FMT_STRING(format), __VA_ARGS__)
MY_LOG("invalid squishiness: {}", 42);
Note that vlog
is not parameterized on argument types which improves compile
times and reduces binary code size compared to a fully parameterized version.
.. doxygenfunction:: fmt::make_args_checked(const S&, const remove_reference_t<Args>&...)
.. doxygenfunction:: fmt::make_format_args(const Args&...)
.. doxygenclass:: fmt::format_arg_store :members:
.. doxygenclass:: fmt::dynamic_format_arg_store :members:
.. doxygenclass:: fmt::basic_format_args :members:
.. doxygenstruct:: fmt::format_args
.. doxygenclass:: fmt::basic_format_arg :members:
.. doxygenclass:: fmt::basic_format_context :members:
.. doxygentypedef:: fmt::format_context
.. doxygentypedef:: fmt::wformat_context
.. doxygenclass:: fmt::basic_string_view :members:
.. doxygentypedef:: fmt::string_view
.. doxygentypedef:: fmt::wstring_view
All formatting is locale-independent by default. Use the 'L'
format
specifier to insert the appropriate number separator characters from the
locale:
#include <fmt/core.h> #include <locale> std::locale::global(std::locale("en_US.UTF-8")); auto s = fmt::format("{:L}", 1000000); // s == "1,000,000"
fmt/format.h
defines the full format API providing compile-time format
string checks, wide string, output iterator and user-defined type support.
Compile-time checks are enabled when using FMT_STRING
. They support built-in
and string types as well as user-defined types with constexpr
parse
functions in their formatter
specializations.
.. doxygendefine:: FMT_STRING
To force the use of compile-time checks, define the preprocessor variable
FMT_ENFORCE_COMPILE_STRING
. When set, functions accepting FMT_STRING
will fail to compile with regular strings. Runtime-checked
formatting is still possible using fmt::vformat
, fmt::vprint
, etc.
To make a user-defined type formattable, specialize the formatter<T>
struct
template and implement parse
and format
methods:
#include <fmt/format.h> struct point { double x, y; }; template <> struct fmt::formatter<point> { // Presentation format: 'f' - fixed, 'e' - exponential. char presentation = 'f'; // Parses format specifications of the form ['f' | 'e']. constexpr auto parse(format_parse_context& ctx) { // auto parse(format_parse_context &ctx) -> decltype(ctx.begin()) // c++11 // [ctx.begin(), ctx.end()) is a character range that contains a part of // the format string starting from the format specifications to be parsed, // e.g. in // // fmt::format("{:f} - point of interest", point{1, 2}); // // the range will contain "f} - point of interest". The formatter should // parse specifiers until '}' or the end of the range. In this example // the formatter should parse the 'f' specifier and return an iterator // pointing to '}'. // Parse the presentation format and store it in the formatter: auto it = ctx.begin(), end = ctx.end(); if (it != end && (*it == 'f' || *it == 'e')) presentation = *it++; // Check if reached the end of the range: if (it != end && *it != '}') throw format_error("invalid format"); // Return an iterator past the end of the parsed range: return it; } // Formats the point p using the parsed format specification (presentation) // stored in this formatter. template <typename FormatContext> auto format(const point& p, FormatContext& ctx) { // auto format(const point &p, FormatContext &ctx) -> decltype(ctx.out()) // c++11 // ctx.out() is an output iterator to write to. return format_to( ctx.out(), presentation == 'f' ? "({:.1f}, {:.1f})" : "({:.1e}, {:.1e})", p.x, p.y); } };
Then you can pass objects of type point
to any formatting function:
point p = {1, 2}; std::string s = fmt::format("{:f}", p); // s == "(1.0, 2.0)"
You can also reuse existing formatters via inheritance or composition, for example:
enum class color {red, green, blue}; template <> struct fmt::formatter<color>: formatter<string_view> { // parse is inherited from formatter<string_view>. template <typename FormatContext> auto format(color c, FormatContext& ctx) { string_view name = "unknown"; switch (c) { case color::red: name = "red"; break; case color::green: name = "green"; break; case color::blue: name = "blue"; break; } return formatter<string_view>::format(name, ctx); } };
Since parse
is inherited from formatter<string_view>
it will recognize
all string format specifications, for example
fmt::format("{:>10}", color::blue)
will return " blue"
.
You can also write a formatter for a hierarchy of classes:
#include <type_traits> #include <fmt/format.h> struct A { virtual ~A() {} virtual std::string name() const { return "A"; } }; struct B : A { virtual std::string name() const { return "B"; } }; template <typename T> struct fmt::formatter<T, std::enable_if_t<std::is_base_of<A, T>::value, char>> : fmt::formatter<std::string> { template <typename FormatCtx> auto format(const A& a, FormatCtx& ctx) { return fmt::formatter<std::string>::format(a.name(), ctx); } }; int main() { B b; A& a = b; fmt::print("{}", a); // prints "B" }
If a type provides both a formatter
specialization and an implicit
conversion to a formattable type, the specialization takes precedence over the
conversion.
.. doxygenclass:: fmt::basic_format_parse_context :members:
The following user-defined literals are defined in fmt/format.h
.
.. doxygenfunction:: operator""_format(const char *s, size_t n)
.. doxygenfunction:: operator""_a(const char *s, size_t)
.. doxygenstruct:: fmt::is_char
.. doxygentypedef:: fmt::char_t
.. doxygenfunction:: fmt::ptr(const T *p)
.. doxygenfunction:: fmt::ptr(const std::unique_ptr<T> &p)
.. doxygenfunction:: fmt::ptr(const std::shared_ptr<T> &p)
.. doxygenfunction:: fmt::ptr(T (*fn)(Args...))
.. doxygenfunction:: fmt::to_string(const T &value)
.. doxygenfunction:: fmt::to_wstring(const T &value)
.. doxygenfunction:: fmt::to_string_view(const Char *s)
.. doxygenfunction:: fmt::join(Range &&range, string_view sep)
.. doxygenfunction:: fmt::join(It begin, Sentinel end, string_view sep)
.. doxygenclass:: fmt::detail::buffer :members:
.. doxygenclass:: fmt::basic_memory_buffer :protected-members: :members:
fmt does not use errno
to communicate errors to the user, but it may call
system functions which set errno
. Users should not make any assumptions about
the value of errno
being preserved by library functions.
.. doxygenclass:: fmt::system_error :members:
.. doxygenfunction:: fmt::format_system_error
.. doxygenclass:: fmt::windows_error :members:
The {fmt} library supports custom dynamic memory allocators. A custom allocator class can be specified as a template argument to :class:`fmt::basic_memory_buffer`:
using custom_memory_buffer = fmt::basic_memory_buffer<char, fmt::inline_buffer_size, custom_allocator>;
It is also possible to write a formatting function that uses a custom allocator:
using custom_string = std::basic_string<char, std::char_traits<char>, custom_allocator>; custom_string vformat(custom_allocator alloc, fmt::string_view format_str, fmt::format_args args) { custom_memory_buffer buf(alloc); fmt::vformat_to(buf, format_str, args); return custom_string(buf.data(), buf.size(), alloc); } template <typename ...Args> inline custom_string format(custom_allocator alloc, fmt::string_view format_str, const Args& ... args) { return vformat(alloc, format_str, fmt::make_format_args(args...)); }
The allocator will be used for the output container only. Formatting functions
normally don't do any allocations for built-in and string types except for
non-default floating-point formatting that occasionally falls back on
sprintf
.
The library also supports convenient formatting of ranges and tuples:
#include <fmt/ranges.h> std::tuple<char, int, float> t{'a', 1, 2.0f}; // Prints "('a', 1, 2.0)" fmt::print("{}", t);
NOTE: currently, the overload of fmt::join
for iterables exists in the main
format.h
header, but expect this to change in the future.
Using fmt::join
, you can separate tuple elements with a custom separator:
#include <fmt/ranges.h> std::tuple<int, char> t = {1, 'a'}; // Prints "1, a" fmt::print("{}", fmt::join(t, ", "));
fmt/chrono.h
provides formatters for
The format syntax is described in :ref:`chrono-specs`.
Example:
#include <fmt/chrono.h> int main() { std::time_t t = std::time(nullptr); // Prints "The date is 2020-11-07." (with the current date): fmt::print("The date is {:%Y-%m-%d}.", fmt::localtime(t)); using namespace std::literals::chrono_literals; // Prints "Default format: 42s 100ms": fmt::print("Default format: {} {}\n", 42s, 100ms); // Prints "strftime-like format: 03:15:30": fmt::print("strftime-like format: {:%H:%M:%S}\n", 3h + 15min + 30s); }
.. doxygenfunction:: localtime(std::time_t time)
.. doxygenfunction:: gmtime(std::time_t time)
fmt/compile.h
provides format string compilation support when using
FMT_COMPILE
. Format strings are parsed, checked and converted into efficient
formatting code at compile-time. This supports arguments of built-in and string
types as well as user-defined types with constexpr
parse
functions in
their formatter
specializations. Format string compilation can generate more
binary code compared to the default API and is only recommended in places where
formatting is a performance bottleneck.
.. doxygendefine:: FMT_COMPILE
fmt/color.h
provides support for terminal color and text style output.
.. doxygenfunction:: print(const text_style &ts, const S &format_str, const Args&... args)
.. doxygenfunction:: fg(detail::color_type)
.. doxygenfunction:: bg(detail::color_type)
.. doxygenclass:: fmt::ostream :members:
fmt/ostream.h
provides std::ostream
support including formatting of
user-defined types that have an overloaded insertion operator (operator<<
):
#include <fmt/ostream.h> class date { int year_, month_, day_; public: date(int year, int month, int day): year_(year), month_(month), day_(day) {} friend std::ostream& operator<<(std::ostream& os, const date& d) { return os << d.year_ << '-' << d.month_ << '-' << d.day_; } }; std::string s = fmt::format("The date is {}", date(2012, 12, 9)); // s == "The date is 2012-12-9"
{fmt} only supports insertion operators that are defined in the same namespaces as the types they format and can be found with the argument-dependent lookup.
.. doxygenfunction:: print(std::basic_ostream<Char> &os, const S &format_str, Args&&... args)
The header fmt/printf.h
provides printf
-like formatting functionality.
The following functions use printf format string syntax with
the POSIX extension for positional arguments. Unlike their standard
counterparts, the fmt
functions are type-safe and throw an exception if an
argument type doesn't match its format specification.
.. doxygenfunction:: printf(const S &format_str, const Args&... args)
.. doxygenfunction:: fprintf(std::FILE *f, const S &format, const Args&... args)
.. doxygenfunction:: fprintf(std::basic_ostream<Char> &os, const S &format_str, const Args&... args)
.. doxygenfunction:: sprintf(const S&, const Args&...)
{fmt} implements nearly all of the C++20 formatting library with the following differences:
- Names are defined in the
fmt
namespace instead ofstd
to avoid collisions with standard library implementations. - Width calculation doesn't use grapheme clusterization. The latter has been implemented in a separate branch but hasn't been integrated yet.
- Chrono formatting doesn't support C++20 date types since they are not provided by standard library implementations.