forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebug_embed_params.py
54 lines (45 loc) · 1.5 KB
/
debug_embed_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import sys
import caffe2.python.onnx.backend as c2
import onnx
import pytorch_test_common
import torch
import torch.jit
from torch.autograd import Variable
torch.set_default_tensor_type("torch.FloatTensor")
try:
import torch
except ImportError:
print("Cannot import torch, hence caffe2-torch test will not run.")
sys.exit(0)
def run_embed_params(proto, model, input, state_dict=None, use_gpu=True):
"""
This is only a helper debug function so we can test embed_params=False
case as well on pytorch front
This should likely be removed from the release version of the code
"""
device = "CPU"
if use_gpu:
device = "CUDA"
model_def = onnx.ModelProto.FromString(proto)
onnx.checker.check_model(model_def)
prepared = c2.prepare(model_def, device=device)
if state_dict:
parameters = []
# Passed in state_dict may have a different order. Make
# sure our order is consistent with the model's order.
# TODO: Even better: keyword arguments!
for k in model.state_dict():
if k in state_dict:
parameters.append(state_dict[k])
else:
parameters = list(model.state_dict().values())
W = {}
for k, v in zip(
model_def.graph.input, pytorch_test_common.flatten((input, parameters))
):
if isinstance(v, Variable):
W[k.name] = v.data.cpu().numpy()
else:
W[k.name] = v.cpu().numpy()
caffe2_out = prepared.run(inputs=W)
return caffe2_out