forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserialization.py
552 lines (464 loc) · 21.4 KB
/
serialization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import difflib
import inspect
import os
import io
import shutil
import struct
import sys
import torch
import tarfile
import tempfile
import warnings
from contextlib import closing, contextmanager
from ._utils import _import_dotted_name
from ._six import string_classes as _string_classes
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
import pathlib
DEFAULT_PROTOCOL = 2
LONG_SIZE = struct.Struct('=l').size
INT_SIZE = struct.Struct('=i').size
SHORT_SIZE = struct.Struct('=h').size
MAGIC_NUMBER = 0x1950a86a20f9469cfc6c
PROTOCOL_VERSION = 1001
STORAGE_KEY_SEPARATOR = ','
class SourceChangeWarning(Warning):
pass
@contextmanager
def mkdtemp():
path = tempfile.mkdtemp()
yield path
shutil.rmtree(path)
_package_registry = []
def register_package(priority, tagger, deserializer):
queue_elem = (priority, tagger, deserializer)
_package_registry.append(queue_elem)
_package_registry.sort()
def _cpu_tag(obj):
if type(obj).__module__ == 'torch':
return 'cpu'
def _cuda_tag(obj):
if type(obj).__module__ == 'torch.cuda':
return 'cuda:' + str(obj.get_device())
def _cpu_deserialize(obj, location):
if location == 'cpu':
return obj
def _cuda_deserialize(obj, location):
if location.startswith('cuda'):
if location[5:] == '':
device = 0
else:
device = max(int(location[5:]), 0)
if not torch.cuda.is_available():
raise RuntimeError('Attempting to deserialize object on a CUDA '
'device but torch.cuda.is_available() is False. '
'If you are running on a CPU-only machine, '
'please use torch.load with map_location=\'cpu\' '
'to map your storages to the CPU.')
if device >= torch.cuda.device_count():
raise RuntimeError('Attempting to deserialize object on CUDA device '
'{} but torch.cuda.device_count() is {}. Please use '
'torch.load with map_location to map your storages '
'to an existing device.'.format(
device, torch.cuda.device_count()))
return obj.cuda(device)
register_package(10, _cpu_tag, _cpu_deserialize)
register_package(20, _cuda_tag, _cuda_deserialize)
def location_tag(storage):
for _, tagger, _ in _package_registry:
location = tagger(storage)
if location:
return location
raise RuntimeError("don't know how to determine data location of " +
torch.typename(storage))
def default_restore_location(storage, location):
for _, _, fn in _package_registry:
result = fn(storage, location)
if result is not None:
return result
raise RuntimeError("don't know how to restore data location of " +
torch.typename(storage) + " (tagged with " +
location + ")")
def normalize_storage_type(storage_type):
return getattr(torch, storage_type.__name__)
def storage_to_tensor_type(storage):
storage_type = type(storage)
module = _import_dotted_name(storage_type.__module__)
return getattr(module, storage_type.__name__.replace('Storage', 'Tensor'))
def _with_file_like(f, mode, body):
"""
Executes a body function with a file object for f, opening
it in 'mode' if it is a string filename.
"""
new_fd = False
if isinstance(f, str) or \
(sys.version_info[0] == 2 and isinstance(f, unicode)) or \
(sys.version_info[0] == 3 and isinstance(f, pathlib.Path)):
new_fd = True
f = open(f, mode)
try:
return body(f)
finally:
if new_fd:
f.close()
def _is_compressed_file(f):
compress_modules = ['gzip']
try:
return f.__module__ in compress_modules
except AttributeError:
return False
def _should_read_directly(f):
"""
Checks if f is a file that should be read directly. It should be read
directly if it is backed by a real file (has a fileno) and is not a
a compressed file (e.g. gzip)
"""
if _is_compressed_file(f):
return False
try:
return f.fileno() >= 0
except io.UnsupportedOperation:
return False
except AttributeError:
return False
def _check_seekable(f):
def raise_err_msg(patterns, e):
for p in patterns:
if p in str(e):
msg = (str(e) + ". You can only torch.load from a file that is seekable." +
" Please pre-load the data into a buffer like io.BytesIO and" +
" try to load from it instead.")
raise type(e)(msg)
raise e
try:
f.seek(f.tell())
return True
except (io.UnsupportedOperation, AttributeError) as e:
raise_err_msg(["seek", "tell"], e)
def save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL):
"""Saves an object to a disk file.
See also: :ref:`recommend-saving-models`
Args:
obj: saved object
f: a file-like object (has to implement write and flush) or a string
containing a file name
pickle_module: module used for pickling metadata and objects
pickle_protocol: can be specified to override the default protocol
.. warning::
If you are using Python 2, torch.save does NOT support StringIO.StringIO
as a valid file-like object. This is because the write method should return
the number of bytes written; StringIO.write() does not do this.
Please use something like io.BytesIO instead.
Example:
>>> # Save to file
>>> x = torch.tensor([0, 1, 2, 3, 4])
>>> torch.save(x, 'tensor.pt')
>>> # Save to io.BytesIO buffer
>>> buffer = io.BytesIO()
>>> torch.save(x, buffer)
"""
return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickle_protocol))
def _save(obj, f, pickle_module, pickle_protocol):
if sys.version_info[0] == 2:
import StringIO
if isinstance(f, StringIO.StringIO):
msg = ('torch.save received unsupported StringIO.StringIO file object, whose '
'write method does not return the number of bytes written. '
'Please use something like io.BytesIO for torch.save instead.')
raise RuntimeError(msg)
import torch.nn as nn
serialized_container_types = {}
serialized_storages = {}
def persistent_id(obj):
# FIXME: the docs say that persistent_id should only return a string
# but torch store returns tuples. This works only in the binary protocol
# see
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
if isinstance(obj, type) and issubclass(obj, nn.Module):
if obj in serialized_container_types:
return None
serialized_container_types[obj] = True
source_file = source = None
try:
source_file = inspect.getsourcefile(obj)
source = inspect.getsource(obj)
except Exception: # saving the source is optional, so we can ignore any errors
warnings.warn("Couldn't retrieve source code for container of "
"type " + obj.__name__ + ". It won't be checked "
"for correctness upon loading.")
return ('module', obj, source_file, source)
elif torch.is_storage(obj):
storage_type = normalize_storage_type(type(obj))
# Offset is always 0, but we keep it for backwards compatibility
# with the old serialization format (which supported storage views)
offset = 0
obj_key = str(obj._cdata)
location = location_tag(obj)
serialized_storages[obj_key] = obj
is_view = obj._cdata != obj._cdata
if is_view:
view_metadata = (str(obj._cdata), offset, obj.size())
else:
view_metadata = None
return ('storage',
storage_type,
obj_key,
location,
obj.size(),
view_metadata)
return None
sys_info = dict(
protocol_version=PROTOCOL_VERSION,
little_endian=sys.byteorder == 'little',
type_sizes=dict(
short=SHORT_SIZE,
int=INT_SIZE,
long=LONG_SIZE,
),
)
pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
pickle_module.dump(sys_info, f, protocol=pickle_protocol)
pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
pickler.persistent_id = persistent_id
pickler.dump(obj)
serialized_storage_keys = sorted(serialized_storages.keys())
pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
f.flush()
for key in serialized_storage_keys:
serialized_storages[key]._write_file(f, _should_read_directly(f))
def load(f, map_location=None, pickle_module=pickle):
"""Loads an object saved with :func:`torch.save` from a file.
:meth:`torch.load` uses Python's unpickling facilities but treats storages,
which underlie tensors, specially. They are first deserialized on the
CPU and are then moved to the device they were saved from. If this fails
(e.g. because the run time system doesn't have certain devices), an exception
is raised. However, storages can be dynamically remapped to an alternative
set of devices using the `map_location` argument.
If `map_location` is a callable, it will be called once for each serialized
storage with two arguments: storage and location. The storage argument
will be the initial deserialization of the storage, residing on the CPU.
Each serialized storage has a location tag associated with it which
identifies the device it was saved from, and this tag is the second
argument passed to map_location. The builtin location tags are `'cpu'` for
CPU tensors and `'cuda:device_id'` (e.g. `'cuda:2'`) for CUDA tensors.
`map_location` should return either None or a storage. If `map_location` returns
a storage, it will be used as the final deserialized object, already moved to
the right device. Otherwise, :math:`torch.load` will fall back to the default
behavior, as if `map_location` wasn't specified.
If `map_location` is a string, it should be a device tag, where all tensors
should be loaded.
Otherwise, if `map_location` is a dict, it will be used to remap location tags
appearing in the file (keys), to ones that specify where to put the
storages (values).
User extensions can register their own location tags and tagging and
deserialization methods using `register_package`.
Args:
f: a file-like object (has to implement read, readline, tell, and seek),
or a string containing a file name
map_location: a function, torch.device, string or a dict specifying how to remap storage
locations
pickle_module: module used for unpickling metadata and objects (has to
match the pickle_module used to serialize file)
.. note::
When you call :meth:`torch.load()` on a file which contains GPU tensors, those tensors
will be loaded to GPU by default. You can call `torch.load(.., map_location='cpu')`
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
Example:
>>> torch.load('tensors.pt')
# Load all tensors onto the CPU
>>> torch.load('tensors.pt', map_location=torch.device('cpu'))
# Load all tensors onto the CPU, using a function
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
# Load all tensors onto GPU 1
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
# Map tensors from GPU 1 to GPU 0
>>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
# Load tensor from io.BytesIO object
>>> with open('tensor.pt') as f:
buffer = io.BytesIO(f.read())
>>> torch.load(buffer)
"""
new_fd = False
if isinstance(f, str) or \
(sys.version_info[0] == 2 and isinstance(f, unicode)) or \
(sys.version_info[0] == 3 and isinstance(f, pathlib.Path)):
new_fd = True
f = open(f, 'rb')
try:
return _load(f, map_location, pickle_module)
finally:
if new_fd:
f.close()
def _load(f, map_location, pickle_module):
deserialized_objects = {}
if map_location is None:
restore_location = default_restore_location
elif isinstance(map_location, dict):
def restore_location(storage, location):
location = map_location.get(location, location)
return default_restore_location(storage, location)
elif isinstance(map_location, _string_classes):
def restore_location(storage, location):
return default_restore_location(storage, map_location)
elif isinstance(map_location, torch.device):
def restore_location(storage, location):
return default_restore_location(storage, str(map_location))
else:
def restore_location(storage, location):
result = map_location(storage, location)
if result is None:
result = default_restore_location(storage, location)
return result
def _check_container_source(container_type, source_file, original_source):
try:
current_source = inspect.getsource(container_type)
except Exception: # saving the source is optional, so we can ignore any errors
warnings.warn("Couldn't retrieve source code for container of "
"type " + container_type.__name__ + ". It won't be checked "
"for correctness upon loading.")
return
if original_source != current_source:
if container_type.dump_patches:
file_name = container_type.__name__ + '.patch'
diff = difflib.unified_diff(current_source.split('\n'),
original_source.split('\n'),
source_file,
source_file, lineterm="")
lines = '\n'.join(diff)
try:
with open(file_name, 'a+') as f:
file_size = f.seek(0, 2)
f.seek(0)
if file_size == 0:
f.write(lines)
elif file_size != len(lines) or f.read() != lines:
raise IOError
msg = ("Saved a reverse patch to " + file_name + ". "
"Run `patch -p0 < " + file_name + "` to revert your "
"changes.")
except IOError:
msg = ("Tried to save a patch, but couldn't create a "
"writable file " + file_name + ". Make sure it "
"doesn't exist and your working directory is "
"writable.")
else:
msg = ("you can retrieve the original source code by "
"accessing the object's source attribute or set "
"`torch.nn.Module.dump_patches = True` and use the "
"patch tool to revert the changes.")
msg = ("source code of class '{}' has changed. {}"
.format(torch.typename(container_type), msg))
warnings.warn(msg, SourceChangeWarning)
def legacy_load(f):
deserialized_objects = {}
def persistent_load(saved_id):
if isinstance(saved_id, tuple):
# Ignore containers that don't have any sources saved
if all(saved_id[1:]):
_check_container_source(*saved_id)
return saved_id[0]
return deserialized_objects[int(saved_id)]
with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
mkdtemp() as tmpdir:
tar.extract('storages', path=tmpdir)
with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
num_storages = pickle_module.load(f)
for i in range(num_storages):
args = pickle_module.load(f)
key, location, storage_type = args
obj = storage_type._new_with_file(f)
obj = restore_location(obj, location)
deserialized_objects[key] = obj
storage_views = pickle_module.load(f)
for target_cdata, root_cdata, offset, size in storage_views:
root = deserialized_objects[root_cdata]
if offset != 0 or size != root.size():
warnings.warn("Detected storage view in legacy serialized data: "
"storage views are no longer natively supported, so we are making "
"a copy of the data instead. THIS IS A SEMANTIC CHANGE! "
"If you need aliasing, reserialize your model using "
"tensors that share storage.")
tensor = torch._utils._rebuild_tensor(root, offset, (size,), (1,))
obj = tensor.clone().storage()
else:
# NB: This line does not appear to be exercised by the
# test suite.
obj = root
deserialized_objects[target_cdata] = obj
tar.extract('tensors', path=tmpdir)
with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
num_tensors = pickle_module.load(f)
for _ in range(num_tensors):
args = pickle_module.load(f)
key, storage_id, original_tensor_type = args
storage = deserialized_objects[storage_id]
tensor_type = storage_to_tensor_type(storage)
ndim, = struct.unpack('<i', f.read(4))
# skip next 4 bytes; legacy encoding treated ndim as 8 bytes
f.read(4)
size = struct.unpack('<{}q'.format(ndim), f.read(8 * ndim))
stride = struct.unpack('<{}q'.format(ndim), f.read(8 * ndim))
storage_offset, = struct.unpack('<q', f.read(8))
tensor = tensor_type().set_(storage, storage_offset, size, stride)
deserialized_objects[key] = tensor
pickle_file = tar.extractfile('pickle')
unpickler = pickle_module.Unpickler(pickle_file)
unpickler.persistent_load = persistent_load
result = unpickler.load()
return result
deserialized_objects = {}
def persistent_load(saved_id):
assert isinstance(saved_id, tuple)
typename = saved_id[0]
data = saved_id[1:]
if typename == 'module':
# Ignore containers that don't have any sources saved
if all(data[1:]):
_check_container_source(*data)
return data[0]
elif typename == 'storage':
data_type, root_key, location, size, view_metadata = data
if root_key not in deserialized_objects:
deserialized_objects[root_key] = restore_location(
data_type(size), location)
storage = deserialized_objects[root_key]
if view_metadata is not None:
view_key, offset, view_size = view_metadata
if view_key not in deserialized_objects:
deserialized_objects[view_key] = storage[offset:offset + view_size]
return deserialized_objects[view_key]
else:
return storage
else:
raise RuntimeError("Unknown saved id type: %s" % saved_id[0])
_check_seekable(f)
f_should_read_directly = _should_read_directly(f)
if f_should_read_directly and f.tell() == 0:
# legacy_load requires that f has fileno()
# only if offset is zero we can attempt the legacy tar file loader
try:
return legacy_load(f)
except tarfile.TarError:
# if not a tarfile, reset file offset and proceed
f.seek(0)
magic_number = pickle_module.load(f)
if magic_number != MAGIC_NUMBER:
raise RuntimeError("Invalid magic number; corrupt file?")
protocol_version = pickle_module.load(f)
if protocol_version != PROTOCOL_VERSION:
raise RuntimeError("Invalid protocol version: %s" % protocol_version)
_sys_info = pickle_module.load(f)
unpickler = pickle_module.Unpickler(f)
unpickler.persistent_load = persistent_load
result = unpickler.load()
deserialized_storage_keys = pickle_module.load(f)
offset = f.tell() if f_should_read_directly else None
for key in deserialized_storage_keys:
assert key in deserialized_objects
deserialized_objects[key]._set_from_file(f, offset, f_should_read_directly)
offset = None
return result