forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstorage.py
128 lines (98 loc) · 3.93 KB
/
storage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import io
import torch
from ._utils import _type, _cuda
class _StorageBase(object):
is_cuda = False
is_sparse = False
def __str__(self):
content = ' ' + '\n '.join(str(self[i]) for i in range(len(self)))
return content + '\n[{} of size {}]'.format(torch.typename(self), len(self))
def __repr__(self):
return str(self)
def __iter__(self):
return iter(map(lambda i: self[i], range(self.size())))
def __copy__(self):
return self.clone()
def __deepcopy__(self, memo):
memo = memo.setdefault('torch', {})
if self._cdata in memo:
return memo[self._cdata]
new_storage = self.clone()
memo[self._cdata] = new_storage
return new_storage
def __reduce__(self):
b = io.BytesIO()
torch.save(self, b)
return (_load_from_bytes, (b.getvalue(),))
def __sizeof__(self):
return super(_StorageBase, self).__sizeof__() + self.element_size() * self.size()
def clone(self):
"""Returns a copy of this storage"""
return type(self)(self.size()).copy_(self)
def tolist(self):
"""Returns a list containing the elements of this storage"""
return [v for v in self]
def cpu(self):
"""Returns a CPU copy of this storage if it's not already on the CPU"""
return self.type(getattr(torch, self.__class__.__name__))
def double(self):
"""Casts this storage to double type"""
return self.type(type(self).__module__ + '.DoubleStorage')
def float(self):
"""Casts this storage to float type"""
return self.type(type(self).__module__ + '.FloatStorage')
def half(self):
"""Casts this storage to half type"""
return self.type(type(self).__module__ + '.HalfStorage')
def long(self):
"""Casts this storage to long type"""
return self.type(type(self).__module__ + '.LongStorage')
def int(self):
"""Casts this storage to int type"""
return self.type(type(self).__module__ + '.IntStorage')
def short(self):
"""Casts this storage to short type"""
return self.type(type(self).__module__ + '.ShortStorage')
def char(self):
"""Casts this storage to char type"""
return self.type(type(self).__module__ + '.CharStorage')
def byte(self):
"""Casts this storage to byte type"""
return self.type(type(self).__module__ + '.ByteStorage')
def pin_memory(self):
"""Copies the storage to pinned memory, if it's not already pinned."""
if self.is_cuda:
raise TypeError("cannot pin '{0}' only CPU memory can be pinned"
.format(self.type()))
import torch.cuda
allocator = torch.cuda._host_allocator()
return type(self)(self.size(), allocator=allocator).copy_(self)
def share_memory_(self):
"""Moves the storage to shared memory.
This is a no-op for storages already in shared memory and for CUDA
storages, which do not need to be moved for sharing across processes.
Storages in shared memory cannot be resized.
Returns: self
"""
from torch.multiprocessing import get_sharing_strategy
if self.is_cuda:
pass # CUDA doesn't use POSIX shared memory
elif get_sharing_strategy() == 'file_system':
self._share_filename_()
else:
self._share_fd_()
return self
@classmethod
def _new_shared(cls, size):
"""Creates a new storage in shared memory with the same data type"""
from torch.multiprocessing import get_sharing_strategy
if cls.is_cuda:
return cls(size)
elif get_sharing_strategy() == 'file_system':
return cls._new_using_filename(size)
else:
return cls._new_using_fd(size)
def _load_from_bytes(b):
return torch.load(io.BytesIO(b))
_StorageBase.type = _type
_StorageBase.cuda = _cuda