forked from pythonstock/stock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathguess_sklearn_ma_daily_job.py
146 lines (126 loc) · 6.36 KB
/
guess_sklearn_ma_daily_job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import libs.common as common
import pandas as pd
import numpy as np
import math
import datetime
import sklearn as skl
from sklearn import datasets, linear_model
# https://github.com/udacity/machine-learning/issues/202
# sklearn.cross_validation 这个包不推荐使用了。
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.neighbors import KNeighborsClassifier
# 要操作的数据库表名称。
table_name = "guess_sklearn_ma_daily"
# 批处理数据。
def stat_all_batch(tmp_datetime):
datetime_str = (tmp_datetime).strftime("%Y-%m-%d")
datetime_int = (tmp_datetime).strftime("%Y%m%d")
print("datetime_str:", datetime_str)
print("datetime_int:", datetime_int)
try:
# 删除老数据。
del_sql = " DELETE FROM `stock_data`.`%s` WHERE `date`= %s " % (table_name, datetime_int)
print("del_sql:", del_sql)
common.insert(del_sql)
except Exception as e:
print("error :", e)
sql_count = """
SELECT count(1) FROM stock_data.ts_today_all WHERE `date` = %s and `trade` > 0 and `open` > 0 and trade <= 20
and `code` not like %s and `name` not like %s
"""
# 修改逻辑,增加中小板块计算。 中小板:002,创业板:300 。and `code` not like %s and `code` not like %s and `name` not like %s
# count = common.select_count(sql_count, params=[datetime_int, '002%', '300%', '%st%'])
count = common.select_count(sql_count, params=[datetime_int, '300%', '%st%'])
print("count :", count)
batch_size = 100
end = int(math.ceil(float(count) / batch_size) * batch_size)
print(end)
# for i in range(0, end, batch_size):
for i in range(0, end, batch_size):
print("loop :", i)
# 查询今日满足股票数据。剔除数据:创业板股票数据,中小板股票数据,所有st股票
# #`code` not like '002%' and `code` not like '300%' and `name` not like '%st%'
sql_1 = """
SELECT `date`, `code`, `name`, `changepercent`, `trade`, `open`, `high`, `low`,
`settlement`, `volume`, `turnoverratio`, `amount`, `per`, `pb`, `mktcap`, `nmc`
FROM stock_data.ts_today_all WHERE `date` = %s and `trade` > 0 and `open` > 0 and trade <= 20
and `code` not like %s and `name` not like %s limit %s , %s
"""
print(sql_1)
# data = pd.read_sql(sql=sql_1, con=common.engine(), params=[datetime_int, '002%', '300%', '%st%', i, batch_size])
data = pd.read_sql(sql=sql_1, con=common.engine(), params=[datetime_int, '300%', '%st%', i, batch_size])
data = data.drop_duplicates(subset="code", keep="last")
print("########data[trade]########:", len(data))
# 使用 trade 填充数据
stock_sklearn = pd.DataFrame({
"date": data["date"], "code": data["code"], "next_close": data["trade"],
"sklearn_score": data["trade"]}, index=data.index.values)
print(stock_sklearn.head())
stock_sklearn_apply = stock_sklearn.apply(apply_sklearn, axis=1) # , axis=1)
# 重命名
del stock_sklearn_apply["date"] # 合并前删除 date 字段。
# 合并数据
data_new = pd.merge(data, stock_sklearn_apply, on=['code'], how='left')
# for index, row in data.iterrows():
# next_stock, score = stat_index_all(row, i)
# print(next_stock, score)
data_new["next_close"] = data_new["next_close"].round(2) # 数据保留4位小数
data_new["sklearn_score"] = data_new["sklearn_score"].round(2) # 数据保留2位小数
data_new["trade_float32"] = data["trade"].astype('float32', copy=False)
data_new["up_rate"] = (data_new["next_close"] - data_new["trade_float32"]) * 100 / data_new["trade_float32"]
data_new["up_rate"] = data_new["up_rate"].round(2) # 数据保留2位小数
del data_new["trade_float32"]
try:
common.insert_db(data_new, table_name, False, "`date`,`code`")
print("insert_db")
except Exception as e:
print("error :", e)
# 重命名
del data_new["name"]
print(data_new)
# code date next_close sklearn_score
def apply_sklearn(data):
# 要操作的数据库表名称。
print("########stat_index_all########:", len(data))
date = data["date"]
code = data["code"]
print(date, code)
date_end = datetime.datetime.strptime(date, "%Y%m%d")
date_start = (date_end + datetime.timedelta(days=-300)).strftime("%Y-%m-%d")
date_end = date_end.strftime("%Y-%m-%d")
print(code, date_start, date_end)
# open high close low volume price_change p_change ma5 ma10 ma20 v_ma5 v_ma10 v_ma20 turnover
stock_X = common.get_hist_data_cache(code, date_start, date_end)
# 增加空判断,如果是空返回 0 数据。
if stock_X is None:
return list([code, date, 0.0, 0.0])
stock_X = stock_X.sort_index(0) # 将数据按照日期排序下。
stock_y = pd.Series(stock_X["close"].values) # 标签
stock_X_next = stock_X.iloc[len(stock_X) - 1]
print("########################### stock_X_next date:", stock_X_next)
# 使用今天的交易价格,13 个指标预测明天的价格。偏移股票数据,今天的数据,目标是明天的价格。
stock_X = stock_X.drop(stock_X.index[len(stock_X) - 1]) # 删除最后一条数据
stock_y = stock_y.drop(stock_y.index[0]) # 删除第一条数据
# print("########################### stock_X date:", stock_X)
# 删除掉close 也就是收盘价格。
del stock_X["close"]
del stock_X_next["close"]
model = linear_model.LinearRegression()
# model = KNeighborsClassifier()
model.fit(stock_X.values, stock_y)
# print("############## test_akshare & target #############")
# print("############## coef_ & intercept_ #############")
# print(model.coef_) # 系数
# print(model.intercept_) # 截断
next_close = model.predict([stock_X_next.values])
if len(next_close) == 1:
next_close = next_close[0]
sklearn_score = model.score(stock_X.values, stock_y)
print("score:", sklearn_score) # 评分
return list([code, date, next_close, sklearn_score * 100])
# main函数入口
if __name__ == '__main__':
# 使用方法传递。
tmp_datetime = common.run_with_args(stat_all_batch)