-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcgan.py
120 lines (100 loc) · 4.53 KB
/
cgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@author: kipp
@contact: [email protected]
@site:
@software: PyCharm
@file: cgan.py
@time: 2019/9/9 下午6:35
# Shallow men believe in luck.
Strong men believe in cause and effect.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import torch
import torchvision
from net.cgan import *
from dataset.mnist import Mnist
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (18.0, 12.0)
#plt.rcParams['figure.dpi'] = 300
class CGAN_Net(object):
def __init__(self,latent_dim, image_shape, auxiliary,lr,b1,b2):
self.latent_dim = latent_dim
self.auxiliary_size = auxiliary
self.generator = Generator(latent_dim, image_shape,auxiliary)
self.discriminator = Discriminator(image_shape, auxiliary)
self.adversarial_loss = torch.nn.BCELoss()
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.generator.to(self.device)
self.discriminator.to(self.device)
self.optimizer_G = optim.Adam(self.generator.parameters(), lr=lr,betas=(b1,b2))
self.optimizer_D = optim.Adam(self.discriminator.parameters(),lr=lr,betas=(b1,b2))
data = Mnist()
self.dataloader = data.get_loader(True, 512,28)
def Train(self, epochs):
plt.figure()
for epoch in range(epochs):
for i, (imgs, labels) in enumerate(self.dataloader):
valid = torch.ones((imgs.size(0),1)).to(self.device)
fake = torch.zeros((imgs.size(0),1)).to(self.device)
real_imgs = imgs.to(self.device)
auxiliary = labels.to(self.device).type(torch.cuda.LongTensor)
# -----------------
# Train Generator
# -----------------
self.optimizer_G.zero_grad()
np_z = np.random.normal(0,1, (imgs.shape[0], self.latent_dim))
z = torch.from_numpy(np_z)
z = z.to(self.device).type(torch.cuda.FloatTensor)
np_aux = np.random.randint(0,self.auxiliary_size,imgs.shape[0])
gen_aux = torch.from_numpy(np_aux)
gen_aux =gen_aux.to(self.device).type(torch.cuda.LongTensor)
gen_imgs = self.generator(z,gen_aux)
valid_imgs = self.discriminator(gen_imgs,gen_aux)
g_loss = self.adversarial_loss(valid_imgs,valid)
g_loss.backward()
self.optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
self.optimizer_D.zero_grad()
real_dis = self.discriminator(real_imgs, auxiliary)
real_loss = self.adversarial_loss(real_dis, valid)
fake_dis = self.discriminator(gen_imgs.detach(), gen_aux)
fake_loss = self.adversarial_loss(fake_dis, fake)
d_loss = (real_loss + fake_loss)/2
d_loss.backward()
self.optimizer_D.step()
if (i+1)%(len(self.dataloader)//2)==0:
print(
"[Epoch %3d/%3d] [Batch %3d/%3d] [real loss: %.4f] [fake loss %.4f] [G loss %.4f]"
% (epoch, epochs, i, len(self.dataloader), real_loss.item(), fake_loss.item(), g_loss.item())
)
self.sample_images(10)
def sample_images(self, n_row):
"""Saves a grid of generated digits ranging from 0 to n_classes"""
np_z = np.random.normal(0, 1, (n_row**2, self.latent_dim)).astype(np.float32)
z = torch.from_numpy(np_z)
z = z.to(self.device)
# Get labels ranging from 0 to n_classes for n rows
labels = np.array([num for _ in range(n_row) for num in range(n_row)])
auxiliary = torch.from_numpy(labels)
auxiliary = auxiliary.to(self.device).type(torch.cuda.LongTensor)
gen_imgs = self.generator(z, auxiliary)
dis_imgs = gen_imgs.view(n_row**2, *(28, 28))
dis_imgs = dis_imgs.to("cpu")
dis_imgs = dis_imgs.detach().numpy()
for k, dis_img in enumerate(dis_imgs):
plt.subplot(n_row, n_row, k + 1)
plt.imshow(dis_imgs[k])
plt.pause(1)
def main(epochs=200,latent_dim=100, auxiliary=10,image_shape=(1,28,28), lr=0.0005, b1=0.5, b2=0.999):
cgan = CGAN_Net(latent_dim, image_shape,auxiliary,lr,b1,b2)
cgan.Train(epochs)
if __name__ == "__main__":
import fire
fire.Fire(main)