forked from abi/screenshot-to-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm.py
190 lines (149 loc) · 5.66 KB
/
llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from enum import Enum
from typing import Any, Awaitable, Callable, List, cast
from anthropic import AsyncAnthropic
from openai import AsyncOpenAI
from openai.types.chat import ChatCompletionMessageParam, ChatCompletionChunk
from utils import pprint_prompt
# Actual model versions that are passed to the LLMs and stored in our logs
class Llm(Enum):
GPT_4_VISION = "gpt-4-vision-preview"
CLAUDE_3_SONNET = "claude-3-sonnet-20240229"
CLAUDE_3_OPUS = "claude-3-opus-20240229"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# Keep in sync with frontend (lib/models.ts)
# User-facing names for the models (for example, in the future, gpt_4_vision might
# be backed by a different model version)
CODE_GENERATION_MODELS = [
"gpt_4_vision",
"claude_3_sonnet",
]
async def stream_openai_response(
messages: List[ChatCompletionMessageParam],
api_key: str,
base_url: str | None,
callback: Callable[[str], Awaitable[None]],
) -> str:
client = AsyncOpenAI(api_key=api_key, base_url=base_url)
model = Llm.GPT_4_VISION
# Base parameters
params = {
"model": model.value,
"messages": messages,
"stream": True,
"timeout": 600,
}
# Add 'max_tokens' only if the model is a GPT4 vision model
if model == Llm.GPT_4_VISION:
params["max_tokens"] = 4096
params["temperature"] = 0
stream = await client.chat.completions.create(**params) # type: ignore
full_response = ""
async for chunk in stream: # type: ignore
assert isinstance(chunk, ChatCompletionChunk)
content = chunk.choices[0].delta.content or ""
full_response += content
await callback(content)
await client.close()
return full_response
# TODO: Have a seperate function that translates OpenAI messages to Claude messages
async def stream_claude_response(
messages: List[ChatCompletionMessageParam],
api_key: str,
callback: Callable[[str], Awaitable[None]],
) -> str:
client = AsyncAnthropic(api_key=api_key)
# Base parameters
model = Llm.CLAUDE_3_SONNET
max_tokens = 4096
temperature = 0.0
# Translate OpenAI messages to Claude messages
system_prompt = cast(str, messages[0].get("content"))
claude_messages = [dict(message) for message in messages[1:]]
for message in claude_messages:
if not isinstance(message["content"], list):
continue
for content in message["content"]: # type: ignore
if content["type"] == "image_url":
content["type"] = "image"
# Extract base64 data and media type from data URL
# Example base64 data URL: ...
image_data_url = cast(str, content["image_url"]["url"])
media_type = image_data_url.split(";")[0].split(":")[1]
base64_data = image_data_url.split(",")[1]
# Remove OpenAI parameter
del content["image_url"]
content["source"] = {
"type": "base64",
"media_type": media_type,
"data": base64_data,
}
# Stream Claude response
async with client.messages.stream(
model=model.value,
max_tokens=max_tokens,
temperature=temperature,
system=system_prompt,
messages=claude_messages, # type: ignore
) as stream:
async for text in stream.text_stream:
await callback(text)
# Return final message
response = await stream.get_final_message()
# Close the Anthropic client
await client.close()
return response.content[0].text
async def stream_claude_response_native(
system_prompt: str,
messages: list[Any],
api_key: str,
callback: Callable[[str], Awaitable[None]],
include_thinking: bool = False,
model: Llm = Llm.CLAUDE_3_OPUS,
) -> str:
client = AsyncAnthropic(api_key=api_key)
# Base model parameters
max_tokens = 4096
temperature = 0.0
# Multi-pass flow
current_pass_num = 1
max_passes = 2
prefix = "<thinking>"
response = None
while current_pass_num <= max_passes:
current_pass_num += 1
# Set up message depending on whether we have a <thinking> prefix
messages_to_send = (
messages + [{"role": "assistant", "content": prefix}]
if include_thinking
else messages
)
pprint_prompt(messages_to_send)
async with client.messages.stream(
model=model.value,
max_tokens=max_tokens,
temperature=temperature,
system=system_prompt,
messages=messages_to_send, # type: ignore
) as stream:
async for text in stream.text_stream:
print(text, end="", flush=True)
await callback(text)
# Return final message
response = await stream.get_final_message()
# Set up messages array for next pass
messages += [
{"role": "assistant", "content": str(prefix) + response.content[0].text},
{
"role": "user",
"content": "You've done a good job with a first draft. Improve this further based on the original instructions so that the app is fully functional and looks like the original video of the app we're trying to replicate.",
},
]
print(
f"Token usage: Input Tokens: {response.usage.input_tokens}, Output Tokens: {response.usage.output_tokens}"
)
# Close the Anthropic client
await client.close()
if not response:
raise Exception("No HTML response found in AI response")
else:
return response.content[0].text