forked from CLK688/YOLO4-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolo.py
203 lines (172 loc) · 8.11 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#-------------------------------------#
# 创建YOLO类
#-------------------------------------#
import cv2
import numpy as np
import colorsys
import os
import torch
import torch.nn as nn
from nets.yolo4 import YoloBody
import torch.backends.cudnn as cudnn
from PIL import Image,ImageFont, ImageDraw
from torch.autograd import Variable
from utils.utils import non_max_suppression, bbox_iou, DecodeBox,letterbox_image,yolo_correct_boxes
#--------------------------------------------#
# 使用自己训练好的模型预测需要修改2个参数
# model_path和classes_path都需要修改!
#--------------------------------------------#
class YOLO(object):
_defaults = {
"model_path": 'model_data/model-finally.pth',
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": 'model_data/coco_classes.txt',
"model_image_size" : (416, 416, 3),
"confidence": 0.8,
"iou" : 0.3,
"cuda": True
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
#---------------------------------------------------#
# 初始化YOLO
#---------------------------------------------------#
def __init__(self, **kwargs):
self.__dict__.update(self._defaults)
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.generate()
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
#---------------------------------------------------#
# 获得所有的先验框
#---------------------------------------------------#
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape([-1, 3, 2])[::-1,:,:]
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def generate(self):
self.net = YoloBody(len(self.anchors[0]),len(self.class_names)).eval()
# 加快模型训练的效率
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
state_dict = torch.load(self.model_path, map_location=device)
self.net.load_state_dict(state_dict)
if self.cuda:
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
self.net = nn.DataParallel(self.net)
self.net = self.net.cuda()
print('Finished!')
self.yolo_decodes = []
for i in range(3):
self.yolo_decodes.append(DecodeBox(self.anchors[i], len(self.class_names), (self.model_image_size[1], self.model_image_size[0])))
print('{} model, anchors, and classes loaded.'.format(self.model_path))
# 画框设置不同的颜色
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image):
image_shape = np.array(np.shape(image)[0:2])
crop_img = np.array(letterbox_image(image, (self.model_image_size[0],self.model_image_size[1])))
photo = np.array(crop_img,dtype = np.float32)
photo /= 255.0
photo = np.transpose(photo, (2, 0, 1))
photo = photo.astype(np.float32)
images = []
images.append(photo)
images = np.asarray(images)
with torch.no_grad():
images = torch.from_numpy(images)
if self.cuda:
images = images.cuda()
outputs = self.net(images)
# print(outputs)
output_list = []
box_text ={ 0:"Nothing!"}
for i in range(3):
output_list.append(self.yolo_decodes[i](outputs[i]))
output = torch.cat(output_list, 1)
batch_detections = non_max_suppression(output, len(self.class_names),
conf_thres=self.confidence,
nms_thres=self.iou)
try:
batch_detections = batch_detections[0].cpu().numpy()
except:
return image, box_text
top_index = batch_detections[:,4]*batch_detections[:,5] > self.confidence
top_conf = batch_detections[top_index,4]*batch_detections[top_index,5]
top_label = np.array(batch_detections[top_index,-1],np.int32)
top_bboxes = np.array(batch_detections[top_index,:4])
top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)
# 去掉灰条
boxes = yolo_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([self.model_image_size[0],self.model_image_size[1]]),image_shape)
font = ImageFont.truetype(font='model_data/simhei.ttf',size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32'))
thickness = (np.shape(image)[0] + np.shape(image)[1]) // self.model_image_size[0]
for i, c in enumerate(top_label):
predicted_class = self.class_names[c]
score = top_conf[i]
top, left, bottom, right = boxes[i]
top = top - 5
left = left - 5
bottom = bottom + 5
right = right + 5
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32'))
right = min(np.shape(image)[1], np.floor(right + 0.5).astype('int32'))
# print(top,left,bottom,right)
x_center = (left + right)/2
y_center = (bottom + top)/2
hight = bottom - top
width = right - left
if hight > width:
width = hight
else:
hight = width
top_new = y_center - hight/2
left_new = x_center - width/2
bottom_new = y_center + hight/2
right_new = x_center + width/2
box_text[i] = [left_new,top_new, right_new,bottom_new ]
# 画框框
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
print(label)
if top_new - label_size[1] >= 0:
text_origin = np.array([left_new, top_new - label_size[1]])
else:
text_origin = np.array([left_new, top_new + 1])
for i in range(thickness):
draw.rectangle(
[left_new + i, top_new + i, right_new - i, bottom_new - i],
outline=self.colors[self.class_names.index(predicted_class)])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[self.class_names.index(predicted_class)])
draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
del draw
return image, box_text