forked from wzzheng/TPVFormer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
401 lines (339 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import os, time, argparse, os.path as osp, numpy as np
import torch
import torch.distributed as dist
from utils.metric_util import MeanIoU
from utils.load_save_util import revise_ckpt, revise_ckpt_2
from dataloader.dataset import get_nuScenes_label_name
from builder import loss_builder
import mmcv
from mmcv import Config
from mmcv.runner import build_optimizer
from mmseg.utils import get_root_logger
from timm.scheduler import CosineLRScheduler
import warnings
warnings.filterwarnings("ignore")
def pass_print(*args, **kwargs):
pass
def main(local_rank, args):
# global settings
torch.backends.cudnn.benchmark = True
# load config
cfg = Config.fromfile(args.py_config)
cfg.work_dir = args.work_dir
dataset_config = cfg.dataset_params
ignore_label = dataset_config['ignore_label']
version = dataset_config['version']
train_dataloader_config = cfg.train_data_loader
val_dataloader_config = cfg.val_data_loader
max_num_epochs = cfg.max_epochs
grid_size = cfg.grid_size
# init DDP
distributed = True
ip = os.environ.get("MASTER_ADDR", "127.0.0.1")
port = os.environ.get("MASTER_PORT", "20506")
hosts = int(os.environ.get("WORLD_SIZE", 1)) # number of nodes
rank = int(os.environ.get("RANK", 0)) # node id
gpus = torch.cuda.device_count() # gpus per node
print(f"tcp://{ip}:{port}")
dist.init_process_group(
backend="nccl", init_method=f"tcp://{ip}:{port}",
world_size=hosts * gpus, rank=rank * gpus + local_rank
)
world_size = dist.get_world_size()
cfg.gpu_ids = range(world_size)
torch.cuda.set_device(local_rank)
if dist.get_rank() != 0:
import builtins
builtins.print = pass_print
# configure logger
if dist.get_rank() == 0:
os.makedirs(args.work_dir, exist_ok=True)
cfg.dump(osp.join(args.work_dir, osp.basename(args.py_config)))
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(args.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file, log_level='INFO')
logger.info(f'Config:\n{cfg.pretty_text}')
# build model
if cfg.get('occupancy', False):
from builder import tpv_occupancy_builder as model_builder
else:
from builder import tpv_lidarseg_builder as model_builder
my_model = model_builder.build(cfg.model)
n_parameters = sum(p.numel() for p in my_model.parameters() if p.requires_grad)
logger.info(f'Number of params: {n_parameters}')
if distributed:
find_unused_parameters = cfg.get('find_unused_parameters', False)
ddp_model_module = torch.nn.parallel.DistributedDataParallel
my_model = ddp_model_module(
my_model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
else:
my_model = my_model.cuda()
print('done ddp model')
# generate datasets
SemKITTI_label_name = get_nuScenes_label_name(dataset_config["label_mapping"])
unique_label = np.asarray(cfg.unique_label)
unique_label_str = [SemKITTI_label_name[x] for x in unique_label]
from builder import data_builder
train_dataset_loader, val_dataset_loader = \
data_builder.build(
dataset_config,
train_dataloader_config,
val_dataloader_config,
grid_size=grid_size,
version=version,
dist=distributed,
scale_rate=cfg.get('scale_rate', 1)
)
# get optimizer, loss, scheduler
optimizer = build_optimizer(my_model, cfg.optimizer)
loss_func, lovasz_softmax = \
loss_builder.build(ignore_label=ignore_label)
scheduler = CosineLRScheduler(
optimizer,
t_initial=len(train_dataset_loader)*max_num_epochs,
lr_min=1e-6,
warmup_t=500,
warmup_lr_init=1e-5,
t_in_epochs=False
)
CalMeanIou_vox = MeanIoU(unique_label, ignore_label, unique_label_str, 'vox')
CalMeanIou_pts = MeanIoU(unique_label, ignore_label, unique_label_str, 'pts')
# resume and load
epoch = 0
best_val_miou_pts, best_val_miou_vox = 0, 0
global_iter = 0
cfg.resume_from = ''
if osp.exists(osp.join(args.work_dir, 'latest.pth')):
cfg.resume_from = osp.join(args.work_dir, 'latest.pth')
if args.resume_from:
cfg.resume_from = args.resume_from
print('resume from: ', cfg.resume_from)
print('work dir: ', args.work_dir)
if cfg.resume_from and osp.exists(cfg.resume_from):
map_location = 'cpu'
ckpt = torch.load(cfg.resume_from, map_location=map_location)
print(my_model.load_state_dict(revise_ckpt(ckpt['state_dict']), strict=False))
optimizer.load_state_dict(ckpt['optimizer'])
scheduler.load_state_dict(ckpt['scheduler'])
epoch = ckpt['epoch']
if 'best_val_miou_pts' in ckpt:
best_val_miou_pts = ckpt['best_val_miou_pts']
if 'best_val_miou_vox' in ckpt:
best_val_miou_vox = ckpt['best_val_miou_vox']
global_iter = ckpt['global_iter']
print(f'successfully resumed from epoch {epoch}')
elif cfg.load_from:
ckpt = torch.load(cfg.load_from, map_location='cpu')
if 'state_dict' in ckpt:
state_dict = ckpt['state_dict']
else:
state_dict = ckpt
state_dict = revise_ckpt(state_dict)
try:
print(my_model.load_state_dict(state_dict, strict=False))
except:
state_dict = revise_ckpt_2(state_dict)
print(my_model.load_state_dict(state_dict, strict=False))
# training
print_freq = cfg.print_freq
# eval
my_model.eval()
val_loss_list = []
CalMeanIou_pts.reset()
CalMeanIou_vox.reset()
with torch.no_grad():
for i_iter_val, (imgs, img_metas, val_vox_label, val_grid, val_pt_labs) in enumerate(val_dataset_loader):
imgs = imgs.cuda()
val_grid_float = val_grid.to(torch.float32).cuda()
val_grid_int = val_grid.to(torch.long).cuda()
vox_label = val_vox_label.cuda()
val_pt_labs = val_pt_labs.cuda()
predict_labels_vox, predict_labels_pts = my_model(img=imgs, img_metas=img_metas, points=val_grid_float)
if cfg.lovasz_input == 'voxel':
lovasz_input = predict_labels_vox
lovasz_label = vox_label
else:
lovasz_input = predict_labels_pts
lovasz_label = val_pt_labs
if cfg.ce_input == 'voxel':
ce_input = predict_labels_vox
ce_label = vox_label
else:
ce_input = predict_labels_pts.squeeze(-1).squeeze(-1)
ce_label = val_pt_labs.squeeze(-1)
loss = lovasz_softmax(
torch.nn.functional.softmax(lovasz_input, dim=1).detach(),
lovasz_label, ignore=ignore_label
) + loss_func(ce_input.detach(), ce_label)
predict_labels_pts = predict_labels_pts.squeeze(-1).squeeze(-1)
predict_labels_pts = torch.argmax(predict_labels_pts, dim=1) # bs, n
predict_labels_pts = predict_labels_pts.detach().cpu()
val_pt_labs = val_pt_labs.squeeze(-1).cpu()
predict_labels_vox = torch.argmax(predict_labels_vox, dim=1)
predict_labels_vox = predict_labels_vox.detach().cpu()
for count in range(len(val_grid_int)):
CalMeanIou_pts._after_step(predict_labels_pts[count], val_pt_labs[count])
CalMeanIou_vox._after_step(
predict_labels_vox[
count,
val_grid_int[count][:, 0],
val_grid_int[count][:, 1],
val_grid_int[count][:, 2]].flatten(),
val_pt_labs[count])
val_loss_list.append(loss.detach().cpu().numpy())
if i_iter_val % print_freq == 0 and dist.get_rank() == 0:
logger.info('[EVAL] Epoch %d Iter %5d: Loss: %.3f (%.3f)'%(
epoch, i_iter_val, loss.item(), np.mean(val_loss_list)))
val_miou_pts = CalMeanIou_pts._after_epoch()
val_miou_vox = CalMeanIou_vox._after_epoch()
if best_val_miou_pts < val_miou_pts:
best_val_miou_pts = val_miou_pts
if best_val_miou_vox < val_miou_vox:
best_val_miou_vox = val_miou_vox
logger.info('Current val miou pts is %.3f while the best val miou pts is %.3f' %
(val_miou_pts, best_val_miou_pts))
logger.info('Current val miou vox is %.3f while the best val miou vox is %.3f' %
(val_miou_vox, best_val_miou_vox))
logger.info('Current val loss is %.3f' %
(np.mean(val_loss_list)))
while epoch < max_num_epochs:
my_model.train()
if hasattr(train_dataset_loader.sampler, 'set_epoch'):
train_dataset_loader.sampler.set_epoch(epoch)
loss_list = []
time.sleep(10)
data_time_s = time.time()
time_s = time.time()
for i_iter, (imgs, img_metas, train_vox_label, train_grid, train_pt_labs) in enumerate(train_dataset_loader):
imgs = imgs.cuda()
train_grid = train_grid.to(torch.float32).cuda()
if cfg.lovasz_input == 'voxel' or cfg.ce_input == 'voxel':
voxel_label = train_vox_label.type(torch.LongTensor).cuda()
if cfg.lovasz_input == 'points' or cfg.ce_input == 'points':
train_pt_labs = train_pt_labs.cuda()
# forward + backward + optimize
data_time_e = time.time()
outputs_vox, outputs_pts = my_model(img=imgs, img_metas=img_metas, points=train_grid)
if cfg.lovasz_input == 'voxel':
lovasz_input = outputs_vox
lovasz_label = voxel_label
else:
lovasz_input = outputs_pts
lovasz_label = train_pt_labs
if cfg.ce_input == 'voxel':
ce_input = outputs_vox
ce_label = voxel_label
else:
ce_input = outputs_pts.squeeze(-1).squeeze(-1)
ce_label = train_pt_labs.squeeze(-1)
loss = lovasz_softmax(
torch.nn.functional.softmax(lovasz_input, dim=1),
lovasz_label, ignore=ignore_label
) + loss_func(ce_input, ce_label)
optimizer.zero_grad()
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(my_model.parameters(), cfg.grad_max_norm)
optimizer.step()
loss_list.append(loss.item())
scheduler.step_update(global_iter)
time_e = time.time()
global_iter += 1
if i_iter % print_freq == 0 and dist.get_rank() == 0:
lr = optimizer.param_groups[0]['lr']
logger.info('[TRAIN] Epoch %d Iter %5d/%d: Loss: %.3f (%.3f), grad_norm: %.1f, lr: %.7f, time: %.3f (%.3f)'%(
epoch, i_iter, len(train_dataset_loader),
loss.item(), np.mean(loss_list), grad_norm, lr,
time_e - time_s, data_time_e - data_time_s
))
data_time_s = time.time()
time_s = time.time()
# save checkpoint
if dist.get_rank() == 0:
dict_to_save = {
'state_dict': my_model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'epoch': epoch + 1,
'global_iter': global_iter,
'best_val_miou_pts': best_val_miou_pts,
'best_val_miou_vox': best_val_miou_vox
}
save_file_name = os.path.join(os.path.abspath(args.work_dir), f'epoch_{epoch+1}.pth')
torch.save(dict_to_save, save_file_name)
dst_file = osp.join(args.work_dir, 'latest.pth')
mmcv.symlink(save_file_name, dst_file)
epoch += 1
# eval
my_model.eval()
val_loss_list = []
CalMeanIou_pts.reset()
CalMeanIou_vox.reset()
with torch.no_grad():
for i_iter_val, (imgs, img_metas, val_vox_label, val_grid, val_pt_labs) in enumerate(val_dataset_loader):
imgs = imgs.cuda()
val_grid_float = val_grid.to(torch.float32).cuda()
val_grid_int = val_grid.to(torch.long).cuda()
vox_label = val_vox_label.cuda()
val_pt_labs = val_pt_labs.cuda()
predict_labels_vox, predict_labels_pts = my_model(img=imgs, img_metas=img_metas, points=val_grid_float)
if cfg.lovasz_input == 'voxel':
lovasz_input = predict_labels_vox
lovasz_label = vox_label
else:
lovasz_input = predict_labels_pts
lovasz_label = val_pt_labs
if cfg.ce_input == 'voxel':
ce_input = predict_labels_vox
ce_label = vox_label
else:
ce_input = predict_labels_pts.squeeze(-1).squeeze(-1)
ce_label = val_pt_labs.squeeze(-1)
loss = lovasz_softmax(
torch.nn.functional.softmax(lovasz_input, dim=1).detach(),
lovasz_label, ignore=ignore_label
) + loss_func(ce_input.detach(), ce_label)
predict_labels_pts = predict_labels_pts.squeeze(-1).squeeze(-1)
predict_labels_pts = torch.argmax(predict_labels_pts, dim=1) # bs, n
predict_labels_pts = predict_labels_pts.detach().cpu()
val_pt_labs = val_pt_labs.squeeze(-1).cpu()
predict_labels_vox = torch.argmax(predict_labels_vox, dim=1)
predict_labels_vox = predict_labels_vox.detach().cpu()
for count in range(len(val_grid_int)):
CalMeanIou_pts._after_step(predict_labels_pts[count], val_pt_labs[count])
CalMeanIou_vox._after_step(
predict_labels_vox[
count,
val_grid_int[count][:, 0],
val_grid_int[count][:, 1],
val_grid_int[count][:, 2]].flatten(),
val_pt_labs[count])
val_loss_list.append(loss.detach().cpu().numpy())
if i_iter_val % print_freq == 0 and dist.get_rank() == 0:
logger.info('[EVAL] Epoch %d Iter %5d: Loss: %.3f (%.3f)'%(
epoch, i_iter_val, loss.item(), np.mean(val_loss_list)))
val_miou_pts = CalMeanIou_pts._after_epoch()
val_miou_vox = CalMeanIou_vox._after_epoch()
if best_val_miou_pts < val_miou_pts:
best_val_miou_pts = val_miou_pts
if best_val_miou_vox < val_miou_vox:
best_val_miou_vox = val_miou_vox
logger.info('Current val miou pts is %.3f while the best val miou pts is %.3f' %
(val_miou_pts, best_val_miou_pts))
logger.info('Current val miou vox is %.3f while the best val miou vox is %.3f' %
(val_miou_vox, best_val_miou_vox))
logger.info('Current val loss is %.3f' %
(np.mean(val_loss_list)))
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('--py-config', default='config/tpv_lidarseg.py')
parser.add_argument('--work-dir', type=str, default='./out/tpv_lidarseg')
parser.add_argument('--resume-from', type=str, default='')
args = parser.parse_args()
ngpus = torch.cuda.device_count()
args.gpus = ngpus
print(args)
torch.multiprocessing.spawn(main, args=(args,), nprocs=args.gpus)