-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain_tcn.py
186 lines (142 loc) · 6.67 KB
/
train_tcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import argparse
import torch
import numpy as np
from torch import optim
from torch import multiprocessing
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader, ConcatDataset
from util import (SingleViewTripletBuilder, distance, Logger, ensure_folder)
from tcn import define_model
IMAGE_SIZE = (299, 299)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--start-epoch', type=int, default=1)
parser.add_argument('--epochs', type=int, default=10000)
parser.add_argument('--save-every', type=int, default=25)
parser.add_argument('--model-folder', type=str, default='./trained_models/tcn/')
parser.add_argument('--load-model', type=str, required=False)
parser.add_argument('--train-directory', type=str, default='./data/train/')
parser.add_argument('--validation-directory', type=str, default='./data/validation/')
parser.add_argument('--minibatch-size', type=int, default=256)
parser.add_argument('--margin', type=float, default=2.0)
parser.add_argument('--model-name', type=str, default='tcn')
parser.add_argument('--log-file', type=str, default='./out.log')
parser.add_argument('--lr-start', type=float, default=0.01)
parser.add_argument('--triplets-from-videos', type=int, default=5)
return parser.parse_args()
arguments = get_args()
logger = Logger(arguments.log_file)
def batch_size(epoch, max_size):
exponent = epoch // 100
return min(max(2 ** (exponent), 2), max_size)
validation_builder = SingleViewTripletBuilder(arguments.validation_directory, IMAGE_SIZE, arguments, sample_size=100)
validation_set = [validation_builder.build_set() for i in range(10)]
validation_set = ConcatDataset(validation_set)
del validation_builder
def validate(tcn, use_cuda, arguments):
# Run model on validation data and log results
data_loader = DataLoader(validation_set, batch_size=256, shuffle=False, pin_memory=use_cuda)
correct_with_margin = 0
correct_without_margin = 0
for minibatch, _ in data_loader:
frames = Variable(minibatch, volatile=True)
if use_cuda:
frames = frames.cuda()
anchor_frames = frames[:, 0, :, :, :]
positive_frames = frames[:, 1, :, :, :]
negative_frames = frames[:, 2, :, :, :]
anchor_output = tcn(anchor_frames)
positive_output = tcn(positive_frames)
negative_output = tcn(negative_frames)
d_positive = distance(anchor_output, positive_output)
d_negative = distance(anchor_output, negative_output)
assert(d_positive.size()[0] == minibatch.size()[0])
correct_with_margin += ((d_positive + arguments.margin) < d_negative).data.cpu().numpy().sum()
correct_without_margin += (d_positive < d_negative).data.cpu().numpy().sum()
message = "Validation score correct with margin {with_margin}/{total} and without margin {without_margin}/{total}".format(
with_margin=correct_with_margin,
without_margin=correct_without_margin,
total=len(validation_set)
)
logger.info(message)
def model_filename(model_name, epoch):
return "{model_name}-epoch-{epoch}.pk".format(model_name=model_name, epoch=epoch)
def save_model(model, filename, model_folder):
ensure_folder(model_folder)
model_path = os.path.join(model_folder, filename)
torch.save(model.state_dict(), model_path)
def build_set(queue, triplet_builder, log):
while 1:
datasets = []
for i in range(5):
dataset = triplet_builder.build_set()
datasets.append(dataset)
dataset = ConcatDataset(datasets)
log.info('Created {0} triplets'.format(len(dataset)))
queue.put(dataset)
def create_model(use_cuda):
tcn = define_model(use_cuda)
# tcn = PosNet()
if arguments.load_model:
model_path = os.path.join(
arguments.model_folder,
arguments.load_model
)
# map_location allows us to load models trained on cuda to cpu.
tcn.load_state_dict(torch.load(model_path, map_location=lambda storage, loc: storage))
if use_cuda:
tcn = tcn.cuda()
return tcn
def main():
use_cuda = torch.cuda.is_available()
tcn = create_model(use_cuda)
triplet_builder = SingleViewTripletBuilder(arguments.train_directory, IMAGE_SIZE, arguments, sample_size=200)
queue = multiprocessing.Queue(1)
dataset_builder_process = multiprocessing.Process(target=build_set, args=(queue, triplet_builder, logger), daemon=True)
dataset_builder_process.start()
optimizer = optim.SGD(tcn.parameters(), lr=arguments.lr_start, momentum=0.9)
# This will diminish the learning rate at the milestones.
# 0.1, 0.01, 0.001
learning_rate_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[100, 500, 1000], gamma=0.1)
ITERATE_OVER_TRIPLETS = 5
for epoch in range(arguments.start_epoch, arguments.start_epoch + arguments.epochs):
logger.info("Starting epoch: {0} learning rate: {1}".format(epoch,
learning_rate_scheduler.get_lr()))
learning_rate_scheduler.step()
dataset = queue.get()
logger.info("Got {0} triplets".format(len(dataset)))
data_loader = DataLoader(
dataset=dataset,
batch_size=arguments.minibatch_size, # batch_size(epoch, arguments.max_minibatch_size),
shuffle=True,
pin_memory=use_cuda
)
if epoch % 10 == 0:
validate(tcn, use_cuda, arguments)
for _ in range(0, ITERATE_OVER_TRIPLETS):
losses = []
for minibatch, _ in data_loader:
frames = Variable(minibatch)
if use_cuda:
frames = frames.cuda()
anchor_frames = frames[:, 0, :, :, :]
positive_frames = frames[:, 1, :, :, :]
negative_frames = frames[:, 2, :, :, :]
anchor_output = tcn(anchor_frames)
positive_output = tcn(positive_frames)
negative_output = tcn(negative_frames)
d_positive = distance(anchor_output, positive_output)
d_negative = distance(anchor_output, negative_output)
loss = torch.clamp(arguments.margin + d_positive - d_negative, min=0.0).mean()
losses.append(loss.data.cpu().numpy()[0])
optimizer.zero_grad()
loss.backward()
optimizer.step()
logger.info('loss: ', np.mean(losses))
if epoch % arguments.save_every == 0 and epoch != 0:
logger.info('Saving model.')
save_model(tcn, model_filename(arguments.model_name, epoch), arguments.model_folder)
if __name__ == '__main__':
main()