-
Notifications
You must be signed in to change notification settings - Fork 0
/
低.py
482 lines (397 loc) · 17.6 KB
/
低.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import copy
import math
import random
import time
import matplotlib.pyplot as plt
from scipy.spatial.transform import Rotation as Rot
import numpy as np
show_animation = True
mubiao_rate=80
k=0.7
class RRT:
def __init__(self, obstacleList, randArea,
expandDis=2.0, goalSampleRate=50, maxIter=200):
self.start = None
self.goal = None
self.min_rand = randArea[0]
self.max_rand = randArea[1]
self.expand_dis = expandDis
self.goal_sample_rate = goalSampleRate
self.max_iter = maxIter
self.obstacle_list = obstacleList
self.node_list = None
def rrt_planning(self, start, goal, animation=True):
start_time = time.time()
self.start = Node(start[0], start[1])
self.goal = Node(goal[0], goal[1])
self.node_list = [self.start]
path = None
for i in range(self.max_iter):
rnd = self.sample()
n_ind = self.get_nearest_list_index(self.node_list, rnd)
nearestNode = self.node_list[n_ind]
# steer
theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
newNode = self.get_new_node(theta, n_ind, nearestNode)
noCollision = self.check_segment_collision(newNode.x, newNode.y, nearestNode.x, nearestNode.y)
if noCollision:
self.node_list.append(newNode)
if animation:
self.draw_graph(newNode, path)
if self.is_near_goal(newNode):
if self.check_segment_collision(newNode.x, newNode.y,
self.goal.x, self.goal.y):
lastIndex = len(self.node_list) - 1
path = self.get_final_course(lastIndex)
pathLen = self.get_path_len(path)
print("current path length: {}, It costs {} s".format(pathLen, time.time()-start_time))
if animation:
self.draw_graph(newNode, path)
return path
def rrt_star_planning(self, start, goal, animation=True):
start_time = time.time()
self.start = Node(start[0], start[1])
self.goal = Node(goal[0], goal[1])
self.node_list = [self.start]
path = None
lastPathLength = float('inf')
for i in range(self.max_iter):
rnd = self.sample()
n_ind = self.get_nearest_list_index(self.node_list, rnd)
nearestNode = self.node_list[n_ind]
# steer
theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
newNode = self.get_new_node(theta, n_ind, nearestNode)
noCollision = self.check_segment_collision(newNode.x, newNode.y, nearestNode.x, nearestNode.y)
if noCollision:
nearInds = self.find_near_nodes(newNode)
newNode = self.choose_parent(newNode, nearInds)
self.node_list.append(newNode)
self.rewire(newNode, nearInds)
if animation:
self.draw_graph(newNode, path)
if self.is_near_goal(newNode):
if self.check_segment_collision(newNode.x, newNode.y,
self.goal.x, self.goal.y):
lastIndex = len(self.node_list) - 1
tempPath = self.get_final_course(lastIndex)
tempPathLen = self.get_path_len(tempPath)
if lastPathLength > tempPathLen:
path = tempPath
lastPathLength = tempPathLen
print("current path length: {}, It costs {} s".format(tempPathLen, time.time()-start_time))
return path
def informed_rrt_star_planning(self, start, goal, animation=True):
start_time = time.time()
self.start = Node(start[0], start[1])
self.goal = Node(goal[0], goal[1])
self.node_list = [self.start]
# max length we expect to find in our 'informed' sample space,
# starts as infinite
cBest = float('inf')
path = None
# Computing the sampling space
cMin = math.sqrt(pow(self.start.x - self.goal.x, 2)
+ pow(self.start.y - self.goal.y, 2))
xCenter = np.array([[(self.start.x + self.goal.x) / 2.0],
[(self.start.y + self.goal.y) / 2.0], [0]])
a1 = np.array([[(self.goal.x - self.start.x) / cMin],
[(self.goal.y - self.start.y) / cMin], [0]])
e_theta = math.atan2(a1[1], a1[0])
# 论文方法求旋转矩阵(2选1)
# first column of identity matrix transposed
# id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3)
# M = a1 @ id1_t
# U, S, Vh = np.linalg.svd(M, True, True)
# C = np.dot(np.dot(U, np.diag(
# [1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])),
# Vh)
# 直接用二维平面上的公式(2选1)
C = np.array([[math.cos(e_theta), -math.sin(e_theta), 0],
[math.sin(e_theta), math.cos(e_theta), 0],
[0, 0, 1]])
for i in range(self.max_iter):
# Sample space is defined by cBest
# cMin is the minimum distance between the start point and the goal
# xCenter is the midpoint between the start and the goal
# cBest changes when a new path is found
rnd = self.informed_sample(cBest, cMin, xCenter, C)
n_ind = self.get_nearest_list_index(self.node_list, rnd)
nearestNode = self.node_list[n_ind]
# steer
theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
newNode = self.get_new_node(theta, n_ind, nearestNode)
noCollision = self.check_segment_collision(newNode.x, newNode.y, nearestNode.x, nearestNode.y)
if noCollision:
nearInds = self.find_near_nodes(newNode)
newNode = self.choose_parent(newNode, nearInds)
self.node_list.append(newNode)
self.rewire(newNode, nearInds)
if self.is_near_goal(newNode):
if self.check_segment_collision(newNode.x, newNode.y,
self.goal.x, self.goal.y):
lastIndex = len(self.node_list) - 1
tempPath = self.get_final_course(lastIndex)
tempPathLen = self.get_path_len(tempPath)
if tempPathLen < cBest:
path = tempPath
cBest = tempPathLen
print("current path length: {}, It costs {} s".format(tempPathLen, time.time()-start_time))
if animation:
self.draw_graph_informed_RRTStar(xCenter=xCenter,
cBest=cBest, cMin=cMin,
e_theta=e_theta, rnd=rnd, path=path)
return path
def sample(self):
if random.randint(0, 100) > self.goal_sample_rate:
rnd = [random.uniform(self.min_rand, self.max_rand), random.uniform(self.min_rand, self.max_rand)]
else: # goal point sampling
rnd = [self.goal.x, self.goal.y]
return rnd
def choose_parent(self, newNode, nearInds):
if len(nearInds) == 0:
return newNode
dList = []
for i in nearInds:
dx = newNode.x - self.node_list[i].x
dy = newNode.y - self.node_list[i].y
d = math.hypot(dx, dy)
theta = math.atan2(dy, dx)
if self.check_collision(self.node_list[i], theta, d):
dList.append(self.node_list[i].cost + d)
else:
dList.append(float('inf'))
minCost = min(dList)
minInd = nearInds[dList.index(minCost)]
if minCost == float('inf'):
print("min cost is inf")
return newNode
newNode.cost = minCost
newNode.parent = minInd
return newNode
def find_near_nodes(self, newNode):
n_node = len(self.node_list)
r = 50.0 * math.sqrt((math.log(n_node) / n_node))
d_list = [(node.x - newNode.x) ** 2 + (node.y - newNode.y) ** 2
for node in self.node_list]
near_inds = [d_list.index(i) for i in d_list if i <= r ** 2]
return near_inds
def informed_sample(self, cMax, cMin, xCenter, C):
if cMax < float('inf'):
r = [cMax / 2.0,
math.sqrt(cMax ** 2 - cMin ** 2) / 2.0,
math.sqrt(cMax ** 2 - cMin ** 2) / 2.0]
L = np.diag(r)
xBall = self.sample_unit_ball()
rnd = np.dot(np.dot(C, L), xBall) + xCenter
rnd = [rnd[(0, 0)], rnd[(1, 0)]]
else:
rnd = self.sample()
return rnd
@staticmethod
def sample_unit_ball():
a = random.random()
b = random.random()
if b < a:
a, b = b, a
sample = (b * math.cos(2 * math.pi * a / b),
b * math.sin(2 * math.pi * a / b))
return np.array([[sample[0]], [sample[1]], [0]])
@staticmethod
def get_path_len(path):
pathLen = 0
for i in range(1, len(path)):
node1_x = path[i][0]
node1_y = path[i][1]
node2_x = path[i - 1][0]
node2_y = path[i - 1][1]
pathLen += math.sqrt((node1_x - node2_x)
** 2 + (node1_y - node2_y) ** 2)
return pathLen
@staticmethod
def line_cost(node1, node2):
return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2)
@staticmethod
def get_nearest_list_index(nodes, rnd):
dList = [(node.x - rnd[0]) ** 2
+ (node.y - rnd[1]) ** 2 for node in nodes]
minIndex = dList.index(min(dList))
return minIndex
def get_new_node(self, theta, n_ind, nearestNode):
newNode = copy.deepcopy(nearestNode)
if random.randint(0, 100) > mubiao_rate:
point1=np.array([self.start.x,self.start.y])
point2=np.array([newNode.x,newNode.y])
point3=np.array([self.goal.x,self.goal.y])
l1=point2-point1
l2=point3-point1
cos=(l1*l2)/(np.linalg.norm(l1)*np.linalg.norm(l2))
p=cos[0]
if p>k:
d = self.line_cost(newNode, self.goal)
newNode.x += (d * math.cos(theta))
newNode.y += (d * math.sin(theta))
else:
newNode.x += 0
newNode.x += 0
else:
newNode.x += self.expand_dis * math.cos(theta)
newNode.y += self.expand_dis * math.sin(theta)
newNode.cost += self.expand_dis
newNode.parent = n_ind
return newNode
def is_near_goal(self, node):
d = self.line_cost(node, self.goal)
if d < self.expand_dis:
return True
return False
def rewire(self, newNode, nearInds):
n_node = len(self.node_list)
for i in nearInds:
nearNode = self.node_list[i]
d = math.sqrt((nearNode.x - newNode.x) ** 2
+ (nearNode.y - newNode.y) ** 2)
s_cost = newNode.cost + d
if nearNode.cost > s_cost:
theta = math.atan2(newNode.y - nearNode.y,
newNode.x - nearNode.x)
if self.check_collision(nearNode, theta, d):
nearNode.parent = n_node - 1
nearNode.cost = s_cost
@staticmethod
def distance_squared_point_to_segment(v, w, p):
# Return minimum distance between line segment vw and point p
if np.array_equal(v, w):
return (p - v).dot(p - v) # v == w case
l2 = (w - v).dot(w - v) # i.e. |w-v|^2 - avoid a sqrt
# Consider the line extending the segment,
# parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
# We clamp t from [0,1] to handle points outside the segment vw.
t = max(0, min(1, (p - v).dot(w - v) / l2))
projection = v + t * (w - v) # Projection falls on the segment
return (p - projection).dot(p - projection)
def check_segment_collision(self, x1, y1, x2, y2):
for (ox, oy, size) in self.obstacle_list:
dd = self.distance_squared_point_to_segment(
np.array([x1, y1]),
np.array([x2, y2]),
np.array([ox, oy]))
if dd <= size ** 2:
return False # collision
return True
def check_collision(self, nearNode, theta, d):
tmpNode = copy.deepcopy(nearNode)
end_x = tmpNode.x + math.cos(theta) * d
end_y = tmpNode.y + math.sin(theta) * d
return self.check_segment_collision(tmpNode.x, tmpNode.y, end_x, end_y)
def get_final_course(self, lastIndex):
path = [[self.goal.x, self.goal.y]]
while self.node_list[lastIndex].parent is not None:
node = self.node_list[lastIndex]
path.append([node.x, node.y])
lastIndex = node.parent
path.append([self.start.x, self.start.y])
return path
def draw_graph_informed_RRTStar(self, xCenter=None, cBest=None, cMin=None, e_theta=None, rnd=None, path=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd[0], rnd[1], "^k")
if cBest != float('inf'):
self.plot_ellipse(xCenter, cBest, cMin, e_theta)
for node in self.node_list:
if node.parent is not None:
if node.x or node.y is not None:
plt.plot([node.x, self.node_list[node.parent].x], [
node.y, self.node_list[node.parent].y], "-g")
for (ox, oy, size) in self.obstacle_list:
plt.plot(ox, oy, "ok", ms=30 * size)
if path is not None:
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.plot(self.start.x, self.start.y, "xr")
plt.xlabel(u'x',fontsize=20)
plt.ylabel(u'y',fontsize=20)
plt.title(u"path planning",fontproperties=my_font,fontsize=16)
plt.plot(self.goal.x, self.goal.y, "xr")
plt.axis([-2, 18, -2, 15])
plt.grid(True)
plt.pause(0.01)
@staticmethod
def plot_ellipse(xCenter, cBest, cMin, e_theta): # pragma: no cover
a = math.sqrt(cBest ** 2 - cMin ** 2) / 2.0
b = cBest / 2.0
angle = math.pi / 2.0 - e_theta
cx = xCenter[0]
cy = xCenter[1]
t = np.arange(0, 2 * math.pi + 0.1, 0.1)
x = [a * math.cos(it) for it in t]
y = [b * math.sin(it) for it in t]
rot = Rot.from_euler('z', -angle).as_matrix()[0:2, 0:2]
fx = rot @ np.array([x, y])
px = np.array(fx[0, :] + cx).flatten()
py = np.array(fx[1, :] + cy).flatten()
plt.plot(cx, cy, "xc")
plt.plot(px, py, "--c")
def draw_graph(self, rnd=None, path=None):
plt.clf()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.node_list:
if node.parent is not None:
if node.x or node.y is not None:
plt.plot([node.x, self.node_list[node.parent].x], [
node.y, self.node_list[node.parent].y], "-g")
for (ox, oy, size) in self.obstacle_list:
# self.plot_circle(ox, oy, size)
plt.plot(ox, oy, "ok", ms=30 * size)
plt.plot(self.start.x, self.start.y, "xr")
plt.plot(self.goal.x, self.goal.y, "xr")
plt.xlabel(u'x',fontsize=20)
plt.ylabel(u'y',fontsize=20)
plt.title(u"path planning",fontsize=16)
if path is not None:
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.axis([-2, 18, -2, 16])
#plt.grid(True)
plt.pause(0.001)
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.cost = 0.0
self.parent = None
def main():
print("Start rrt planning")
# create obstacles
obstacleList = [
(3, 3, 1.5),
(12, 6, 1),
(3, 10, 2),
(9, 11, 1),
(8, 4, 1),
]
#obstacleList = [(5, 5, 0.5), (3, 6, 0.3), (3, 8, 0.2), (3, 10, 0.7), (7, 5, 0.8),
# (9, 5, 0.5), (8, 10, 0.2),(2, 2, 0.8),(10,12,0.1),
## (8,3,0.5),(4,4,0.3),(9,2,0.5),(1,7,0.6),(5,1,0.1),
# (4,1,0.2),(4,2,0.5),(0,10,0.5),(1,12,0.8),(-1,4,0.5),
# (17,12,0.8),(11,11,0.5),(12,14,0.5),(7,10,0.8),(5,2,0.5),
#(15,2,0.9),(5,10,0.6),(13,4,0.8),(14,6,0.8)]
# Set params
rrt = RRT(randArea=[-2, 18], obstacleList=obstacleList, maxIter=200)
path = rrt.rrt_planning(start=[0, 0], goal=[15, 12], animation=show_animation)
# path = rrt.rrt_star_planning(start=[0, 0], goal=[15, 12], animation=show_animation)
# path = rrt.informed_rrt_star_planning(start=[0, 0], goal=[15, 12], animation=show_animation)
print("Done!!")
if show_animation and path:
plt.show()
if __name__ == '__main__':
main()