forked from adventuresinML/adventures-in-ml-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgensim_word2vec.py
179 lines (150 loc) · 6.91 KB
/
gensim_word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gensim
from gensim.models import word2vec
import logging
from keras.layers import Input, Embedding, merge
from keras.models import Model
import tensorflow as tf
import numpy as np
import urllib.request
import os
import zipfile
vector_dim = 300
root_path = "C:\\Users\Andy\PycharmProjects\\adventures-in-ml-code\\"
def maybe_download(filename, url, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
if not os.path.exists(filename):
filename, _ = urllib.request.urlretrieve(url + filename, filename)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename
# convert the input data into a list of integer indexes aligning with the wv indexes
# Read the data into a list of strings.
def read_data(filename):
"""Extract the first file enclosed in a zip file as a list of words."""
with zipfile.ZipFile(filename) as f:
data = f.read(f.namelist()[0]).split()
return data
def convert_data_to_index(string_data, wv):
index_data = []
for word in string_data:
if word in wv:
index_data.append(wv.vocab[word].index)
return index_data
def gensim_demo():
url = 'http://mattmahoney.net/dc/'
filename = maybe_download('text8.zip', url, 31344016)
if not os.path.exists((root_path + filename).strip('.zip')):
zipfile.ZipFile(root_path+filename).extractall()
sentences = word2vec.Text8Corpus((root_path + filename).strip('.zip'))
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
model = word2vec.Word2Vec(sentences, iter=10, min_count=10, size=300, workers=4)
# get the word vector of "the"
print(model.wv['the'])
# get the most common words
print(model.wv.index2word[0], model.wv.index2word[1], model.wv.index2word[2])
# get the least common words
vocab_size = len(model.wv.vocab)
print(model.wv.index2word[vocab_size - 1], model.wv.index2word[vocab_size - 2], model.wv.index2word[vocab_size - 3])
# find the index of the 2nd most common word ("of")
print('Index of "of" is: {}'.format(model.wv.vocab['of'].index))
# some similarity fun
print(model.wv.similarity('woman', 'man'), model.wv.similarity('man', 'elephant'))
# what doesn't fit?
print(model.wv.doesnt_match("green blue red zebra".split()))
str_data = read_data(root_path + filename)
index_data = convert_data_to_index(str_data, model.wv)
print(str_data[:4], index_data[:4])
# save and reload the model
model.save(root_path + "mymodel")
def create_embedding_matrix(model):
# convert the wv word vectors into a numpy matrix that is suitable for insertion
# into our TensorFlow and Keras models
embedding_matrix = np.zeros((len(model.wv.vocab), vector_dim))
for i in range(len(model.wv.vocab)):
embedding_vector = model.wv[model.wv.index2word[i]]
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
return embedding_matrix
def tf_model(embedding_matrix, wv):
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# embedding layer weights are frozen to avoid updating embeddings while training
saved_embeddings = tf.constant(embedding_matrix)
embedding = tf.Variable(initial_value=saved_embeddings, trainable=False)
# create the cosine similarity operations
norm = tf.sqrt(tf.reduce_sum(tf.square(embedding), 1, keep_dims=True))
normalized_embeddings = embedding / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True)
# Add variable initializer.
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
# call our similarity operation
sim = similarity.eval()
# run through each valid example, finding closest words
for i in range(valid_size):
valid_word = wv.index2word[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = wv.index2word[nearest[k]]
log_str = '%s %s,' % (log_str, close_word)
print(log_str)
def keras_model(embedding_matrix, wv):
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
# input words - in this case we do sample by sample evaluations of the similarity
valid_word = Input((1,), dtype='int32')
other_word = Input((1,), dtype='int32')
# setup the embedding layer
embeddings = Embedding(input_dim=embedding_matrix.shape[0], output_dim=embedding_matrix.shape[1],
weights=[embedding_matrix])
embedded_a = embeddings(valid_word)
embedded_b = embeddings(other_word)
similarity = merge([embedded_a, embedded_b], mode='cos', dot_axes=2)
# create the Keras model
k_model = Model(input=[valid_word, other_word], output=similarity)
def get_sim(valid_word_idx, vocab_size):
sim = np.zeros((vocab_size,))
in_arr1 = np.zeros((1,))
in_arr2 = np.zeros((1,))
in_arr1[0,] = valid_word_idx
for i in range(vocab_size):
in_arr2[0,] = i
out = k_model.predict_on_batch([in_arr1, in_arr2])
sim[i] = out
return sim
# now run the model and get the closest words to the valid examples
for i in range(valid_size):
valid_word = wv.index2word[valid_examples[i]]
top_k = 8 # number of nearest neighbors
sim = get_sim(valid_examples[i], len(wv.vocab))
nearest = (-sim).argsort()[1:top_k + 1]
log_str = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = wv.index2word[nearest[k]]
log_str = '%s %s,' % (log_str, close_word)
print(log_str)
if __name__ == "__main__":
run_opt = 2
if run_opt == 1:
gensim_demo()
elif run_opt == 2:
model = gensim.models.Word2Vec.load(root_path + "mymodel")
embedding_matrix = create_embedding_matrix(model)
tf_model(embedding_matrix, model.wv)
elif run_opt == 3:
model = gensim.models.Word2Vec.load(root_path + "mymodel")
embedding_matrix = create_embedding_matrix(model)
keras_model(embedding_matrix, model.wv)