forked from graykode/nlp-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTextLSTM.py
73 lines (54 loc) · 2.48 KB
/
TextLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# %%
# code by Tae Hwan Jung @graykode
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
def make_batch():
input_batch, target_batch = [], []
for seq in seq_data:
input = [word_dict[n] for n in seq[:-1]] # 'm', 'a' , 'k' is input
target = word_dict[seq[-1]] # 'e' is target
input_batch.append(np.eye(n_class)[input])
target_batch.append(target)
return input_batch, target_batch
class TextLSTM(nn.Module):
def __init__(self):
super(TextLSTM, self).__init__()
self.lstm = nn.LSTM(input_size=n_class, hidden_size=n_hidden)
self.W = nn.Linear(n_hidden, n_class, bias=False)
self.b = nn.Parameter(torch.ones([n_class]))
def forward(self, X):
input = X.transpose(0, 1) # X : [n_step, batch_size, n_class]
hidden_state = torch.zeros(1, len(X), n_hidden) # [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
cell_state = torch.zeros(1, len(X), n_hidden) # [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
outputs, (_, _) = self.lstm(input, (hidden_state, cell_state))
outputs = outputs[-1] # [batch_size, n_hidden]
model = self.W(outputs) + self.b # model : [batch_size, n_class]
return model
if __name__ == '__main__':
n_step = 3 # number of cells(= number of Step)
n_hidden = 128 # number of hidden units in one cell
char_arr = [c for c in 'abcdefghijklmnopqrstuvwxyz']
word_dict = {n: i for i, n in enumerate(char_arr)}
number_dict = {i: w for i, w in enumerate(char_arr)}
n_class = len(word_dict) # number of class(=number of vocab)
seq_data = ['make', 'need', 'coal', 'word', 'love', 'hate', 'live', 'home', 'hash', 'star']
model = TextLSTM()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
input_batch, target_batch = make_batch()
input_batch = torch.FloatTensor(input_batch)
target_batch = torch.LongTensor(target_batch)
# Training
for epoch in range(1000):
optimizer.zero_grad()
output = model(input_batch)
loss = criterion(output, target_batch)
if (epoch + 1) % 100 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
loss.backward()
optimizer.step()
inputs = [sen[:3] for sen in seq_data]
predict = model(input_batch).data.max(1, keepdim=True)[1]
print(inputs, '->', [number_dict[n.item()] for n in predict.squeeze()])