-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassiPi.py
86 lines (65 loc) · 2.39 KB
/
classiPi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import glob
import os
import librosa
import numpy as np
import tensorflow as tf
import sounddevice
from sklearn.preprocessing import StandardScaler
duration = 0.1 # seconds
sample_rate=44100
'''0 = air_conditioner
1 = car_horn
2 = children_playing
3 = dog_bark
4 = drilling
5 = engine_idling
6 = gun_shot
7 = jackhammer
8 = siren
9 = street_music'''
def extract_features():
X = sounddevice.rec(int(duration * sample_rate), samplerate=sample_rate, channels=1)
sounddevice.wait()
X= np.squeeze(X)
stft = np.abs(librosa.stft(X))
mfccs = np.array(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=8).T)
chroma = np.array(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T)
mel = np.array(librosa.feature.melspectrogram(X, sr=sample_rate).T)
contrast = np.array(librosa.feature.spectral_contrast(S=stft, sr=sample_rate).T)
tonnetz = np.array(librosa.feature.tonnetz(y=librosa.effects.harmonic(X), sr=sample_rate).T)
ext_features = np.hstack([mfccs,chroma,mel,contrast,tonnetz])
features = np.vstack([features,ext_features])
return features
model_path = "model"
fit_params = np.load('fit_params.npy')
sc = StandardScaler()
sc.fit(fit_params)
n_dim = 161
n_classes = 10
n_hidden_units_one = 256
n_hidden_units_two = 256
sd = 1 / np.sqrt(n_dim)
learning_rate = 0.01
X = tf.placeholder(tf.float32,[None,n_dim])
Y = tf.placeholder(tf.float32,[None,n_classes])
W_1 = tf.Variable(tf.random_normal([n_dim,n_hidden_units_one], mean = 0, stddev=sd))
b_1 = tf.Variable(tf.random_normal([n_hidden_units_one], mean = 0, stddev=sd))
h_1 = tf.nn.tanh(tf.matmul(X,W_1) + b_1)
W_2 = tf.Variable(tf.random_normal([n_hidden_units_one,n_hidden_units_two], mean = 0, stddev=sd))
b_2 = tf.Variable(tf.random_normal([n_hidden_units_two], mean = 0, stddev=sd))
h_2 = tf.nn.sigmoid(tf.matmul(h_1,W_2) + b_2)
W = tf.Variable(tf.random_normal([n_hidden_units_two,n_classes], mean = 0, stddev=sd))
b = tf.Variable(tf.random_normal([n_classes], mean = 0, stddev=sd))
y_ = tf.nn.softmax(tf.matmul(h_2,W) + b)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
y_true, y_pred = None, None
with tf.Session() as sess:
saver.restore(sess, model_path)
print "Model loaded"
sess.run(tf.global_variables())
while 1:
feat = extract_features()
feat = sc.transform(feat)
y_pred = sess.run(tf.argmax(y_, 1), feed_dict={X: feat})
print y_pred