forked from veraposeidon/CS131_Assignments
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
143 lines (115 loc) · 4.73 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
from scipy.ndimage import affine_transform
# Functions to convert points to homogeneous coordinates and back
pad = lambda x: np.hstack([x, np.ones((x.shape[0], 1))])
unpad = lambda x: x[:,:-1]
def plot_matches(ax, image1, image2, keypoints1, keypoints2, matches,
keypoints_color='k', matches_color=None, only_matches=False):
"""Plot matched features.
Parameters
----------
ax : matplotlib.axes.Axes
Matches and image are drawn in this ax.
image1 : (N, M [, 3]) array
First grayscale or color image.
image2 : (N, M [, 3]) array
Second grayscale or color image.
keypoints1 : (K1, 2) array
First keypoint coordinates as ``(row, col)``.
keypoints2 : (K2, 2) array
Second keypoint coordinates as ``(row, col)``.
matches : (Q, 2) array
Indices of corresponding matches in first and second set of
descriptors, where ``matches[:, 0]`` denote the indices in the first
and ``matches[:, 1]`` the indices in the second set of descriptors.
keypoints_color : matplotlib color, optional
Color for keypoint locations.
matches_color : matplotlib color, optional
Color for lines which connect keypoint matches. By default the
color is chosen randomly.
only_matches : bool, optional
Whether to only plot matches and not plot the keypoint locations.
"""
image1.astype(np.float32)
image2.astype(np.float32)
new_shape1 = list(image1.shape)
new_shape2 = list(image2.shape)
if image1.shape[0] < image2.shape[0]:
new_shape1[0] = image2.shape[0]
elif image1.shape[0] > image2.shape[0]:
new_shape2[0] = image1.shape[0]
if image1.shape[1] < image2.shape[1]:
new_shape1[1] = image2.shape[1]
elif image1.shape[1] > image2.shape[1]:
new_shape2[1] = image1.shape[1]
if new_shape1 != image1.shape:
new_image1 = np.zeros(new_shape1, dtype=image1.dtype)
new_image1[:image1.shape[0], :image1.shape[1]] = image1
image1 = new_image1
if new_shape2 != image2.shape:
new_image2 = np.zeros(new_shape2, dtype=image2.dtype)
new_image2[:image2.shape[0], :image2.shape[1]] = image2
image2 = new_image2
image = np.concatenate([image1, image2], axis=1)
offset = image1.shape
if not only_matches:
ax.scatter(keypoints1[:, 1], keypoints1[:, 0],
facecolors='none', edgecolors=keypoints_color)
ax.scatter(keypoints2[:, 1] + offset[1], keypoints2[:, 0],
facecolors='none', edgecolors=keypoints_color)
ax.imshow(image, interpolation='nearest', cmap='gray')
ax.axis((0, 2 * offset[1], offset[0], 0))
for i in range(matches.shape[0]):
idx1 = matches[i, 0]
idx2 = matches[i, 1]
if matches_color is None:
color = np.random.rand(3)
else:
color = matches_color
ax.plot((keypoints1[idx1, 1], keypoints2[idx2, 1] + offset[1]),
(keypoints1[idx1, 0], keypoints2[idx2, 0]),
'-', color=color)
def get_output_space(img_ref, imgs, transforms):
"""
Args:
img_ref: reference image
imgs: images to be transformed
transforms: list of affine transformation matrices. transforms[i] maps
points in imgs[i] to the points in img_ref
Returns:
output_shape
"""
assert (len(imgs) == len(transforms))
r, c = img_ref.shape
corners = np.array([[0, 0], [r, 0], [0, c], [r, c]])
all_corners = [corners]
for i in range(len(imgs)):
r, c = imgs[i].shape
H = transforms[i]
corners = np.array([[0, 0], [r, 0], [0, c], [r, c]])
warped_corners = corners.dot(H[:2,:2]) + H[2,:2]
all_corners.append(warped_corners)
# Find the extents of both the reference image and the warped
# target image
all_corners = np.vstack(all_corners)
# The overall output shape will be max - min
corner_min = np.min(all_corners, axis=0)
corner_max = np.max(all_corners, axis=0)
output_shape = (corner_max - corner_min)
# Ensure integer shape with np.ceil and dtype conversion
output_shape = np.ceil(output_shape).astype(int)
offset = corner_min
return output_shape, offset
def warp_image(img, H, output_shape, offset):
# Note about affine_transfomr function:
# Given an output image pixel index vector o,
# the pixel value is determined from the input image at position
# np.dot(matrix,o) + offset.
Hinv = np.linalg.inv(H)
m = Hinv.T[:2,:2]
b = Hinv.T[:2,2]
img_warped = affine_transform(img.astype(np.float32),
m, b+offset,
output_shape,
cval=-1)
return img_warped