forked from EisenIn/DiscreteOpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ellipsoid.tex
816 lines (681 loc) · 33.1 KB
/
ellipsoid.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
\chapter{The ellipsoid method}
\label{el:cha:ellipsoid-method}
It is not known whether the simplex algorithm is an algorithm that
runs in polynomial
time. For many pivoting rules it was even proved to require an
exponential number of iterations~\cite{MR0332165}. It was long open, whether there exists a polynomial time
algorithm for linear programming until Khachiyan~\cite{Khachiyan79}
showed that the ellipsoid method\cite{Shor77,MR736268} can solve
linear programs in polynomial time. The remarkable fact is that the
algorithm is polynomial in the binary encoding length of the linear
program. In other words, if the input consists of the problem
$\max\{c^Tx\colon x \in \setR^n, \, Ax \leq b\}$, where $A\in \setQ^{m\times n}$ and $b
\in \setQ^m$, then the algorithm runs in polynomial time in $m+n+s$, where
$s$ is the largest binary encoding length of a rational number
appearing in $A$ or $b$. The question, whether there exists an
algorithm which runs in time polynomial in $m+n$ and performs
arithmetic operations on numbers, whose binary encoding length remains
polynomial in $m+n+s$ is one of the most prominent open problems in
theoretical computer science and discrete optimization.
Initially, the ellipsoid method can be used to solve the following
problem.
\begin{quote}
Given a matrix $A \in \setZ^{m\times n}$ and a vector $b \in \setZ^m$, determine a
feasible point $x^*$ in the polyhedron $P = \{ x \in \setR^n \mid Ax\leq b\}$ or
assert that $P$ is \emph{not full-dimensional} or $P$ is unbounded.
\end{quote}
%
After we understand how the ellipsoid method solves this problem in
polynomial time, we discuss why linear programming can be solved in
polynomial time.
Clearly, we can assume that $A$ has full column rank. Otherwise, we
can find with Gaussian elimination an invertible matrix $U \in
\setR^{n\times n}$ with $A \cdot U = \smat{A' & 0}$ where $A'$ has full column rank. The
system $A'x\leq b$ is then feasible if and only if $Ax\leq b$ is feasible.
\begin{exercise}
\label{el:ex:6}
Let $x'$ be a feasible solution of $A'x\leq b$ and suppose that $U$ from
above is given. Show how to compute a feasible solution $\tilde{x}$ of
$Ax\leq b$. Also vice versa, show how to compute $x'$, if
$\tilde{x}$ is
given.
\end{exercise}
The \emph{unit ball} is the set $B = \{ x \in \setR^n \mid \|x\|\leq1\}$ and an
\emph{ellipsoid} $E(A,b)$ is the image of the unit ball under a linear map
$t:\setR^n\to\setR^n$ with $t(x) = Ax +b$, where $A \in \setR^{n\times n}$ is an invertible
matrix and $b \in \setR^n$ is a vector. Clearly
\begin{equation}
\label{el:eq:13}
E(A,b) = \{ x \in \setR^n \mid \| A^{-1} x - A^{-1} b \| \leq1\}.
\end{equation}
%
\begin{exercise}
\label{el:ex:8}
Consider the mapping $t(x) = \smat{1 & 3 \\ 2 & 5}
\smat{x_1\\x_2}$. Draw the ellipsoid which is defined by $t$. What
are the axes of the ellipsoid?
\end{exercise}
The \emph{volume} of the unit ball is denoted by $V_n$, where $V_n \sim
\frac{1}{\pi\,n} \left( \frac{2\,e\,\pi}{n}\right)^{n/2}$. It follows that
the volume of the ellipsoid $E(A,b)$ is equal to $|\det(A)| \cdot V_n$.
The next lemma is the key to the development of the ellipsoid method.
\begin{lemma}[Half-Ball Lemma]
\label{el:lem:12}
The half-ball $H=\{x \in \setR^n \mid \|x\|\leq1, x_1\geq0\}$ is contained in the
ellipsoid
\begin{equation}
\label{el:eq:13}
E = \left\{ x \in \setR^n \mid \left(\frac{n+1}{n}\right)^2 \left( x_1 -
\frac{1}{n+1}\right)^2 + \frac{n^2-1}{n^2} \sum_{i=2}^n x_i^2 \leq1 \right\}
\end{equation}
\end{lemma}
\begin{figure}[htbp]
\centering
{
\includegraphics{figures/ellipsoid1.pdf}
}
\caption{Half-ball lemma.}
\label{el:fig:half-ball}
\end{figure}
\begin{proof}
Let $x$ be contained in the unit ball, i.e., $\|x\|\leq1$ and suppose
further that $0\leq x_1$ holds. We need to show that
\begin{equation}
\label{el:eq:16}
\left(\frac{n+1}{n}\right)^2 \left( x_1 -
\frac{1}{n+1}\right)^2 + \frac{n^2-1}{n^2} \sum_{i=2}^n x_i^2 \leq1
\end{equation}
holds.
Since $\sum_{i=2}^nx_i^2\leq1 - x_1^2$ holds we have
\begin{equation}
\label{el:eq:15}
\begin{split}
\left(\frac{n+1}{n}\right)^2 \left( x_1 -
\frac{1}{n+1}\right)^2 & + \frac{n^2-1}{n^2} \sum_{i=2}^n x_i^2 \\
& \leq \left(\frac{n+1}{n}\right)^2 \left( x_1 -
\frac{1}{n+1}\right)^2 + \frac{n^2-1}{n^2} (1-x_1^2)
\end{split}
\end{equation}
This shows that~\eqref{el:eq:16} holds if $x$ is contained in the
half-ball and $x_1=0$ or $x_1=1$. Now consider the right-hand-side
of~\eqref{el:eq:15} as a function of $x_1$, i.e., consider
\begin{equation}
\label{el:eq:17}
f(x_1) = \left(\frac{n+1}{n}\right)^2 \left( x_1 -
\frac{1}{n+1}\right)^2 + \frac{n^2-1}{n^2} (1-x_1^2).
\end{equation}
The first derivative is
\begin{equation}
\label{el:eq:18}
f'(x_1) = 2\cdot \left(\frac{n+1}{n}\right)^2 \left( x_1 -
\frac{1}{n+1}\right) - 2\cdot \frac{n^2-1}{n^2} x_1.
\end{equation}
We have $f'(0)<0$ and since both $f(0)=1$ and $f(1)=1$ (and since
$f(x_1)$ is a 2-degree polynomial w.r.t. $x_1$), we have
$f(x_1)\leq1$ for all $0\leq x_1\leq1$ and the assertion follows.
\end{proof}
In terms of a matrix $A$ and a vector $b$, the ellipsoid $E$ is
described as $E = \{ x \in \setR^n \mid \| A^{-1} x - A^{-1}b\|\}$, where $A$
is the diagonal matrix with diagonal entries
\begin{displaymath}
\frac{n}{n+1},\sqrt{\frac{n^2}{n^2-1}},\ldots,\sqrt{\frac{n^2}{n^2-1}}
\end{displaymath}
and $b$ is the vector $b = (1/(n+1),0,\ldots,0)$. Our ellipsoid $E$ is thus
the image of the unit sphere under the linear transformation
$t(x)=Ax+b$.
The determinant of $A$
is thus $\frac{n}{n+1}\left(\frac{n^2}{n^2-1}\right)^{(n-1)/2}$ which is
bounded by
\begin{equation}
\label{el:eq:19}
e^{-1/(n+1)} e^{(n-1)/(2\cdot (n^2-1))} = e^{-\frac{1}{2(n+1)}}.
\end{equation}
%
We can conclude the following theorem.
\begin{theorem}
\label{el:thr:19}
The half-ball $\{ x \in \setR^n \mid x_1\geq0, \, \|x\|\leq1\}$ is contained in an
ellipsoid $E$, whose volume is bounded by $ e^{-\frac{1}{2(n+1)}} \cdot
V_n$.
\end{theorem}
%
% Consider now the unit-ball $B$ intersected with a half-space through
% the origin, thus the set
% \begin{equation}
% \label{el:eq:14}
% H_c= B \cap (c^Tx\geq0) = \{ x \in \setR^n \mid \|x\|\leq1, \, c^Tx\geq0\}.
% \end{equation}
% Clearly $H_c$ is the image of a \emph{rotation} $q(x) = Q\cdot x$, where
% $Q\in \setR^{n\times n}$ is an orthonormal matrix. The rotation $q$ maps
% $c^Tx\geq0$ to the half-space $x(1)\geq0$. Recall
% that a matrix is called \emph{orthonormal} if $Q^TQ = I$.
% \begin{exercise}
% \label{el:ex:5}
% Show that such a $Q$ exists. \emph{Hint: Recall the Gram-Schmidt
% orthogonalization procedure and apply it to a basis of $\setR^n$ which
% contains $c$}
% \end{exercise}
% Since $H_c$ is the image of $H$ under the linear map $q(x)=Q\,x$ it
% follows from Theorem~\ref{el:thr:19} that $H_c$ is contained in the image
% of $E$ under the mapping $q$. In fact, this is an ellipsoid, since it
% is the image of the unit sphere under the mapping $q\circ t$.
Recall the following notion from linear algebra. A symmetric matrix $A
\in \setR^{n\times n}$ is called positive definite if all its eigenvalues are
positive. Recall the following theorem.
\begin{theorem}
\label{el:thr:22}
Let $A \in \setR^{n\times n}$ be a symmetric matrix. The following are
equivalent.
\begin{enumerate}[i)]
\item $A$ is positive definite.
\item $A = L^TL $, where $L\in \setR^{n\times n} $ is a uniquely determined upper
triangular matrix.
\item $x^TAx>0$ for each $x \in \setR^n \setminus\{0\}$.
\item $A = Q^T \textrm{diag}(\lambda_1,\ldots,\lambda_n) Q$, where $Q \in \setR^{n\times n}$ is an
orthogonal matrix and $\lambda_i \in \setR_{>0}$ for $i=1,\ldots,n$.
\end{enumerate}
\end{theorem}
It is now convenient to switch to a different representation of an
ellipsoid. An ellipsoid $\eE(A,a)$ is the set $\eE(A,a) = \{ x \in \setR^n \mid
(x-a)^TA^{-1}(x-a)\leq 1\}$, where $A \in \setR^{n\times n}$ is a symmetric positive
definite matrix and $a\in \setR^n$ is a vector, called the
\emph{center} of the ellipsoid. Consider the half-ellipsoid
$\eE(A,a) \cap (c^Tx\leq c^Ta)$.
Our goal is a similar lemma as the half-ball-lemma for ellipsoids.
Geometrically it is clear that each half-ellipsoid $\eE(A,a) \cap
(c^Tx\leq c^Ta)$ must be contained in another ellipsoid $\eE(A',b')$
with $\vol(\eE(A',a'))/ \vol(\eE(A,a))\leq e^{-1/(2n)}$. More precisely
this follows from the fact that the half-ellipsoid is the image of the
half-ball under a linear transformation. Therefore the image of the
ellipsoid $E$ under the same transformation contains the
half-ellipsoid. Also, the volume-ratio of the two ellipsoids is
invariant under a linear transformation.
We now record the formula for the ellipsoid $\eE'(A',a')$.
It is defined by
\begin{eqnarray}
\label{el:eq:20}
a' & = & a - \frac{1}{n+1}b \\
A' & = & \frac{n^2}{n^2-1}\left( A - \frac{2}{n+1}b\, b^T \right),
\end{eqnarray}
where $b$ is the vector $b = A\, c/ \sqrt{c^TA\,c} $.
The proof of the correctness of this formula can be found
in~\cite{GroetschelLovaszSchrijver88}.
\begin{lemma}[Half-Ellipsoid-Theorem]
\label{el:thr:20}
The half-ellipsoid $\eE(A,b) \cap (c^Tx\leq c^Ta)$ is contained in the
ellipsoid $\eE'(A',a')$ and one has $\vol(\eE')/
\vol(\eE)\leq e^{-1/(2n)}$.
\end{lemma}
%\begin{proof}
% If $c^T$ is the vector $(-1,0,\ldots,0)$, and $a=0$, then
% \begin{eqnarray*}
% b & = & (-1,0,\ldots,0)\\
% a' &=& a - \frac{1}{n+1}b = (1/(n+1),0,\ldots,0)^T\\
% A' &=& \diag\left(\frac{n^2}{(n+1)^2},\frac{n^2}{n^2-1}
% ,\ldots,\frac{n^2}{n^2-1}\right)
% \end{eqnarray*}
% and thus the assertion follows from Lemma~\ref{el:lem:12}.
% We now denote the matrix
% $\diag\left(\frac{n^2}{(n+1)^2},\frac{n^2}{n^2-1}
% ,\ldots,\frac{n^2}{n^2-1}\right)$ by $D$ and the vector
% $(1/(n+1),0,\ldots,0)^T$ by $d$.
% To this end, recall the notation from above, where $B$ denotes the
% unit ball and $E$ denotes the ellipsoid $\eE(D,d)$ which contains
% the half-ball $B \cap (x(1)\geq0)$.
% Let $\eE(A,a)$ be any ellipsoid and let $\eE'(A',a')$ be the
% ellipsoid defined by~\eqref{el:eq:20} above. The matrix $A$ is
% positive definite and thus can be factored into $A = F^TF$
% Clearly there exists a \emph{rotation} or orthonormal matrix $Q$
% which maps $Fc$ to a positive multiple of $(-1,0,\ldots,0)^T$, i.e., with
%\begin{equation}
% \label{el:eq:21}
% (-1,0,\ldots,0)^T = Q F c/ \|Q F c\|.
%\end{equation}
%The function
%\begin{equation}
% \label{el:eq:22}
% T(x) = F Q^T x +a,
%\end{equation}
%is a bijective affine transformation with
%$T^{-1}(x)=QF^{-1}(x-a)$.
%One has
%\begin{eqnarray*}
% T(B) & = & \{ T(y) \mid y^Ty\leq1\} \\
% & = & \{ x \mid (T^{-1}(x))^T(T^{-1}(x))\leq1 \\
% & = & \{ x \mid (x-a)^T (F^{-1})^TQQ^TF^{-1}\\
% & = & \{ x \mid (x-a)^T A^{-1} (x-a)\leq1\}\\
% & = & \eE.
%\end{eqnarray*}
%The image of $E$ under $T(x)$ is
%\begin{eqnarray*}
% T(B) & = & \{ T(y) \mid (y-d)^TD^{-1} (y-d)\leq1\} \\
% & = & \{ x \mid (T^{-1}(x)-d)^T D^{-1} (T^{-1}(y)-d)\leq1 \\
% & = & \{ x \mid (x-d-a)^T (F^{-1})^TQDQ^TF^{-1}\\
% & = & \{ x \mid (x-a)^T A^{-1} (x-a)\leq1\}\\
% & = & \eE.
%\end{eqnarray*}
%\end{proof}
Before talking about the method, we give a useful definition.
\begin{definition}
A polyhedron $P$ is full-dimensional if it has positive volume.
\end{definition}
\section{The method}
\label{el:sec:method}
Suppose we know the following things of our polyhedron $P$.
\begin{enumerate}[I)]
\item We have a number $L$ such that $\vol(P)\geq L$ if $P$ is
full-dimensional.
\item We have an ellipsoid $\eE_{init}$ which contains $P$ if $P$ is
bounded.
\end{enumerate}
The ellipsoid method is now easily described.
\begin{algorithm}[Ellipsoid method exact version]
\label{el:alg:3}
~
\begin{enumerate}[a)]
\item (Initialize): Set $\eE(A,a) := \eE_{init}$ \label{el:item:2}
\item If $a \in P$, then assert $P \neq \emptyset$ and stop \label{el:item:1}
\item If $\vol(\eE)<L$, then assert that $P$ is unbounded or $P$ is
not full-dimensional \label{el:item:3}
\item Otherwise, compute an inequality $c^Tx\leq\beta$ which is valid for
$P$ and satisfies $c^Ta>\beta$ and replace $\eE(A,a)$ by $\eE(A',a)$
computed with formula~\eqref{el:eq:20} and goto
step~\ref{el:item:1}).\label{el:item:4}
\end{enumerate}
\end{algorithm}
%
\begin{theorem}
\label{el:thr:21}
The ellipsoid method computes a point in the polyhedron $P$ or
asserts that $P$ is unbounded or not full-dimensional. The number of
iterations is bounded by $2\cdot n \ln (\vol(\eE_{init}) / L)$.
\end{theorem}
\begin{proof}
Unless $P$ is unbounded, we start with an ellipsoid which contains
$P$. This then holds for all the subsequently computed
ellipsoids. After $i$ iterations one has
\begin{equation}
\label{el:eq:23}
\vol(\eE)/ \vol(\eE_{init}) \leq e^{-\frac{i}{2n}}.
\end{equation}
Since we stop when $\vol(\eE)<L$, we stop at least after $2\cdot n
\ln(\vol(\eE_{init})/ L)$ iterations. This shows the claim.
\end{proof}
\section{Deciding feasibility}
\label{sec:deciding-feasibility}
Suppose that we have to decide the feasibility of $P = \{x ∈ ℝ^n : Ax ≤ b\}$
using the ellipsoid method described above. Here $A ∈ ℤ^{m ×n}$
and $b ∈ ℤ^{m}$.
In the following $B$
is an upper bound on the absolute values of the components of $A$
and $b$.
To apply the ellipsoid method we have to take care of the following items:
\begin{enumerate}[i)]
\item We have to find a starting ball that contains a subset of the feasible region. \label{item:4}
\item We have to deal with the fact that $P$ might not be full dimensional even if it is feasible. \label{item:7}
\item We have to bound the volume $P$ from below, if $P$ is full dimensional. \label{item:8}
\end{enumerate}
We first deal with the issue~\ref{item:4}).
Suppose that there exists a feasible point $x^*$ and consider the index sets
$I = \{ i : x^*_i ≥0 \}$ and $J = \{j : x^*_j ≥0\}$. The polyhedron
\begin{displaymath}
P' = \{ x ∈ ℝ^n : Ax ≤b, x_i ≥ 0, i ∈ I, \, x_j ≤ 0, j ∈ J\}
\end{displaymath}
is contained in $P$ and it has vertices. Clearly $P'$ is described by a system of inequalities $Cx≤d$ where each component of $C$ and $d$ is bounded by $B$ in absolute value.
A vertex $v^*$ of $P'$ is of the form $v^* = C_B^{-1} b_B$ for a basis $B$ of $C$. Since $C_B^{-1} = \widetilde{C_B} / \det(C_B)$ where $\widetilde{C_B} \in ℤ^{n ×n}$ is the adjoint of $C_B$. Each component of $\widetilde{C_B}$ is, by the Hadamard bound, bounded by $B^n ⋅ n^{n/2}$. It follows that $\|v^*\|_∞$ is bounded by
$n^{n/2+1} ⋅ B^{n+1}$. We can thus conclude that $P$ is infeasible if and only if
\begin{displaymath}
P ∩ \{ x ∈ ℝ^n : \|x\|_∞ ≤ n^{n/2+1} ⋅ B^{n+1} \}
\end{displaymath}
is infeasible.
For this polyhedron, we have a starting ellipsoid which is the ball of radius $n^{n/2+1} ⋅ B^{n+1} $ around $0$.
Next, we deal with the issue~\ref{item:7}).
\begin{exercise}
\label{el:ex:11}
Let $P = \{ x \in \setR^n \mid Ax\leq b\}$ be a polyhedron and $\varepsilon>0$ be a
real number. Show that $P_\varepsilon = \{ x \in \setR^n \mid Ax\leq b+ \varepsilon\cdot
\mathbf{1}\}$ is full-dimensional if $P \neq \emptyset$.
\end{exercise}
The above exercise raises the following question. Is there an $\varepsilon>0$
such that $P_\varepsilon = \emptyset$ if and only if $P = \emptyset$ and furthermore is the
binary encoding length of this $\varepsilon$ polynomial in the binary encoding
length of $A$ and $b$?
We recall the Farkas' lemma (Theorem~\ref{thr:7}).
\begin{theorem}
\label{el:thr:24}
The system $Ax\leq b$ does not have a solution if and only if there
exists a nonnegative vector $\lambda \in \setR^m_{\geq0}$ such that $\lambda^TA = 0$
and $\lambda^Tb=-1$.
\end{theorem}
%Again, suppose $A\in \setZ^{m\times n}$ and $b\in \setZ^m$ and let $B$ be the largest absolute
%value of a coefficient of $A$ and $b$. If $Ax\leq b$ is not feasible,
%then there exists a $\lambda\geq0$ such that $\lambda^T(A|b) = (\mathbf{0}|-1)$.
If $Ax ≤b$ is infeasible, then the polyhedron
\begin{displaymath}
\{ λ ∈ ℝ^m : λ^TA = 0, \, λ^T b = -1 , \, λ ≥0 \}
\end{displaymath}
has vertices. As we have argued before, there exists a vertex $λ^*$ of $P$ such that $\|λ^*\| ≤ n^{n/2+1} ⋅ B^{n+1} $.
Now let $\varepsilon = (2 ⋅ m ⋅ n^{n/2+1} ⋅ B^{n+1})^{-1}$. Then $|{λ^*}^T \mathbf{1} \cdot \varepsilon |<1$ and thus
\begin{equation}
\label{el:eq:42}
\lambda^T (b+ \varepsilon \cdot \mathbf{1}) <0.
\end{equation}
%
Consequently the system $Ax\leq b+\varepsilon \cdot \mathbf{1}$
is infeasible if and only
if $Ax\leq b$ is infeasible. Furthermore, if $Ax\leq b+\varepsilon \cdot \mathbf{1}$ is feasible, then the polyhedron described by this set of inequalities is full-dimensional.
Notice again that the encoding length of
$\varepsilon$ is polynomial in the encoding length of $Ax\leq b$. % and we conclude
% with the main theorem of this section.
% This discussion is summarized in the following lemma.
% \begin{lemma}
% \label{lem:2}
% Let $A ∈ ℤ^{m ×n}$ and $b ∈ ℤ^m$ and let $B$ be an upper bound on the absolute value of the entries of $A$ and $b$ and let $K = (2 ⋅ m ⋅ n^{n/2+1} ⋅ B^{n+1})$.
% Then $Ax ≤ b $ is feasible if and only of $ K ⋅ A x ≤ K ⋅ b + \mathbf{1}$ is feasible. The binary encoding length of $ K ⋅ A x ≤ K ⋅ b + \mathbf{1}$ is polynomial in the binary encoding length of $Ax ≤b$.
% \end{lemma}
Next we deal with issue~\ref{item:8}. We ask ourselves the following question. If $P = \{x ∈ ℝ^n : Ax ≤b\}$ is full-dimensional and bounded, what is a lower bound on $\vol(P)$?
If $P$ is full-dimensional, then $P$ contains $n+1$ affinely independent vertices $v_1,\dots,v_{n+1}$, see Exercise~\ref{exercise:3}. Each of these vertices is of the form $v_i = v_i'/q_i$, where $v_i' ∈ ℤ^n$ and $q_i$ is a $n×n$-sub-determinant of $A$. Consequently
\begin{eqnarray*}
\vol(P) & ≥ & (1/ ∏_{i=1}^{n+1} q_i) ⋅ \vol(\conv(v'_1,\dots,v'_{n+1})) \\
& ≥ & (B^{n}⋅ n^{n/2} )^{-n}⋅ 1/n!,
\end{eqnarray*}where the last inequality follows from the Hadamard bound and Exercise~\ref{exercise:1} and Exercise~\ref{exercise:2}.
A crude bound on $\vol(P)$ is thus $\vol(P) ≥ 1 / (B^{n^2} ⋅ n^{2⋅n^2})$.
We can conclude with the following theorem.
\begin{theorem}
\label{thr:11}
Let $Ax ≤ b$ be a system of linear inequalities with $A∈ℤ^{m×n}$ and $b∈ℤ^{m}$. Let $B$ be an upper bound on the absolute value of the entries of $A$ and $b$. The ellipsoid medthod can decide in time polynomial in $n,m$ and $\log B$ whether $Ax ≤ b$ is feasible.
\end{theorem}
The next theorem follows from binary search. Its proof is an exercise.
\begin{theorem}
\label{thr:12}
Let $\max\{c^Tx : x ∈ ℝ^n, \, Ax ≤b\}$ be a linear program with $A ∈ ℤ^{m×n}$, $b ∈ ℤ^{m}$, $c ∈ Ζ^{n}$. Let $B$ be an upper bound on the absolute value of the entries of $A$ and $b$. The ellipsoid method finds an optimal solution of the linear program if one exists in time polynomial in $n,m$ and $\log B$.
Let $Ax ≤ b$ be a system of linear inequalities with $A∈ℤ^{m×n}$ and $b∈ℤ^{m}$. Let $B$ be an upper bound on the absolute value of the entries of $A$ and $b$. The ellipsoid can decide in time polynomial in $n,m$ and $\log B$ whether $Ax ≤ b$ is feasible.
\end{theorem}
\subsection*{Exercises}
\begin{enumerate}
\item Show the following. If $P⊆ℝ^n$ is a bounded and full-dimensional polyhedron, then there exist vertices $v_1,\dots,v_{n+1}$ of $P$ that are affinely independent, i.e., $v_2-v_1, v_3-v_1, \dots, v_{n+1}-v_1$ are linearly independent. \emph{Hint: If $a^Tx = β$ is some hyperplane, where $a ∈ ℝ^n \setminus \{0\}$, then there exists a vertex of $P$ that is not contained in that hyperplane.}\label{exercise:3}
\item Show that $\vol(\conv(0,e_1,\dots,e_n)) = 1/n!$ \label{exercise:1}
\item Let $a_1,\dots,a_n ∈ℤ^n$ be linearly independent. Show that
\begin{displaymath}
\vol(\conv(0,a_1,\dots,a_n)) = |\det(a_1,\dots,a_n)| /n!.
\end{displaymath} \label{exercise:2}
\end{enumerate}
\section{The separation problem}
\label{el:sec:separation-problem}
At this point we can already notice a very important fact. Inspect
step~\ref{el:item:4} of the algorithm. What is required here? An
inequality which is valid for $P$ but not for the center $a$ of
$\eE(A,a)$. Such an inequality is readily at hand if we have the
complete inequality description of $P$ in terms of a system
$Cx\leq d$. Just pick an inequality which is violated by $a$. Sometimes
however, it is not possible to describe the polyhedron of a
combinatorial optimization problem with an inequality system
efficiently, simply
because the number of inequalities is too large.
An example of such a polyhedron is the matching polytope, see
Theorem~\ref{po:thr:18}.
The great power of the ellipsoid method lies in the fact that we do
not have to \emph{write down} the polyhedron entirely. We only have to
solve the so-called separation problem for the polyhedron, which is
defined as follows.
\fancybox[Separation Problem]{ Given a
point $a \in \setR^n$ determine, whether $a\in P$ and if not, compute an
inequality $c^Tx\leq\beta$ which is valid for $P$ with $c^Ta>\beta$. }
\begin{exercise}
\label{el:ex:10}
We are given an undirected graph $G=(V,E)$. A \emph{spanning tree}
$T$ is a subset $T\subseteq E$ of the edges such that $T$ does not contain
a cycle and $T$ connects all the vertices $V$. Consider the
following \emph{spanning tree polytope} $P_{span}$
\begin{eqnarray}
\sum_{e\in E} x(e) & = & n-1 \label{el:eq:26}\\
\sum_{e\in \delta(U)} x(e) & \geq & 1 \quad \quad \forall \emptyset \subset U \subset V \label{el:eq:25}\\
x(e) & \leq & 1 \quad \quad \forall e\in E \\
x(e) & \geq & 0 \quad \quad \forall e\in E.
\end{eqnarray}
Let $x$ be an integral solution of $P_{span}$ and define $T=\{e\in E \mid
x(e)=1\}$. The inequality~\eqref{el:eq:26} ensures that exactly $n-1$ edges are
picked. The inequalities~\eqref{el:eq:25} ensure that $T$ connects the
vertices
of $G$. Thus $T$ must be a spanning tree. Clearly, there are
exponentially many inequalities of type~\eqref{el:eq:25}. Nevertheless,
a fractional solution of this polytope can be computed using the
ellipsoid method.
Show that the separation problem for $P_{span}$ can be solved in
polynomial time.
\emph{Hint:} To verify whether a vector $x\in \setR_{\geq0}^{|E|}$ fulfills
inequalities of type~\eqref{el:eq:25}, it is a good idea to recall the
MinCut or MaxFlow problem.
{\small
\noindent
Via binary search even an optimal solution can be computed in
polynomial time (in the input length) if we introduce edge costs (you
don't have to show that). In the next semester you will see that any
optimal basis solution is integral and hence defines an optimal
spanning tree w.r.t. the edge costs.
}
\end{exercise}
\begin{exercise}
\label{el:ex:7}
Consider the triangle defined by
\begin{eqnarray*}
-x_1-x_2 & \leq & -2 \\
3 x_1 & \leq & 4\\
-2x_1 + 2x_2 & \leq & 3.
\end{eqnarray*}
Draw the triangle and simulate the ellipsoid method with starting
ellipsoid being the ball of radius $6$ around $0$. Draw each of the
computed ellipsoids with your favorite program (pstrics, maple,\ldots ).
How many iterations does the ellipsoid method take?
\emph{Ignore the occurring rounding errors!}
\end{exercise}
% \section{How to start and when to stop }
% \label{el:sec:how-start-when-1}
% In our description of the ellipsoid method, we did not explain yet what
% the initial ellipsoid is and when we can stop with asserting
% that $P$ is either not full-dimensional or unbounded.
% Suppose therefore that $P = \{ x \in \setR^n \mid Ax\leq b\}$ is
% full-dimensional and bounded with $A\in \setZ^{m\times n}$ and $b\in \setZ^m$. Let
% $B$ be the largest absolute value of a component of $A$ and $b$. In this
% section we will show the following things.
% \begin{enumerate}[i)]
% \item The vertices of $P$ are in the box
% $\{x \in \setR^n \mid -n^{n/2} B^n \leq x_i \leq n^{n/2} B^n$
% $\forall 1 \leq i \leq n \}$.
% Thus $P$ is contained in the ball around $0$
% with radius $n^{n} B^n$ . Observe that the encoding length of this
% radius is $\size(n^{n}B^n) = O(n \log n + n\size(B))$ which is
% polynomial in the dimension $n$ and the largest encoding length of a
% coefficient of $A$ and $b$. \label{el:item:7}
% \item The volume of $P$ is bounded from below by $1 /
% (n\cdot B)^{3n^2}$. \label{el:item:8}
% \end{enumerate}
% The following lemma is proved in any linear algebra course.
% \begin{lemma}[Inverse formula and Cramer's rule]
% \label{el:lem:11}
% Let $C \in \setR^{n\times n}$ be a nonsingular matrix. Then
% \begin{displaymath}
% C^{-1}(j,i) = (-1)^{i+j} \det(C_{ij}) / \det(C),
% \end{displaymath}
% where $C_{ij}$ is the matrix arising from $C$ by the deletion of the
% $i^{th}$ row and $j^{th}$ column. If $d\in \setR^n$ is a vector
% then the $j^{th}$ component of $C^{-1}d$ is given by
% $\det(\wt{C})/\det(C)$, where $\wt{C}$ arises from $C$ be
% replacing the $j^{th}$ column with $d$.
% \end{lemma}
% We now define the size of a rational number $r = p/q$ with $p$ and $q$
% relatively prime integers, a vector $c \in \setQ^n$ and a matrix $A \in
% \setQ^{m\times n}$:
% \begin{itemize}
% \item $\size(r) = 1 + \lceil\log ( |p|+1) \rceil + \lceil \log( |q|+1) \rceil$
% \item $\size(c) = n+ \sum_{i=1}^n \size(c_i)$
% \item $\size(A) = m\cdot n + \sum_{i=1}^n\sum_{j=1}^m \size(A(i,j))$
% \end{itemize}
% We recall the Hadamard inequality which states that for $A \in
% \setR^{n\times n}$ one has
% \begin{equation}
% \label{el:eq:10}
% |\det(A)| \leq \prod_{i=1}^n \|a_i\|,
% \end{equation}
% where $a_i$ denotes the $i^{th}$ column of $A$. In particular, if $B$
% is the largest absolute value of an entry in $A$, then
% \begin{equation}
% \label{el:eq:11}
% |\det(A)| \leq n^{n/2} B^{n}.
% \end{equation}
% %\begin{exercise}[Computing the determinant with modular arithmetic]
% % \label{el:ex:9}
% % In this exercise we show how to compute the determinant of a matrix
% % $A \in \setZ{n\times n}$ in polynomial time. We are all aware of the fact that
% % Gaussian elimination performs $O(n^3)$
% % \emph{arithmetic operations} to compute an upper triangular matrix
% % $R \in \setQ^{n\times n}$ from $A$ such that $\det(R) = \det(A)$ and $\det(A)
% % = \prod_{i=1}^n r(i,i,)$. But could the number of \emph{bits} which are
% % necessary to represent the intermediate steps in Gaussian
% % elimination explode~? We do not want to answer this question in this
% % exercise. Instead we circumvent it by using the Hadamard
% % inequality.
% %\end{exercise}
% Now let us inspect the vertices of a polyhedron $P = \{ x \in \setR^n \mid
% Ax\leq b\}$, where $A$ and $b$ are integral and the largest absolute
% value of any entry in $A$ and $b$ is bounded by $B$. A vertex is
% determined as the unique solution of a linear system $A'x=b'$, where
% $A'x\leq b'$ is a subsystem of $Ax\leq b$ and $A'$ is invertible. Using
% Cramer's rule and our observation~\eqref{el:eq:11} we see that the
% vertices of $P$ lie in the box $\{x \in \setR^n \mid -n^{n/2} B^n \leq x_i \leq n^{n/2} B^n,$ $i = 1,\cdots,n\}$. This
% shows~\ref{el:item:7}).
% Now let us consider a lower bound on the volume of $P$. Since $P$ is
% full-dimensional, there exist $n+1$ affinely independent vertices
% $v_0,\ldots,v_n$ of $P$ which span a \emph{simplex} in $\setR^{n}$
% (i.e. the $n$-dimensional polytope equivalent to the convex-hull of
% these $n+1$ vertices). The
% volume of this simplex is determined by the formula
% \begin{equation}
% \label{el:eq:24}
% \frac{1}{n!} \cdot \left|\det \mat{1 & \cdots & 1 \\ v_0& \ldots&v_n} \right|.
% \end{equation}
% %
% By Cramer's rule and the Hadamard inequality, the common denominator
% of each component of $v_i$ can be bounded by $n^{n/2} B^n$. Thus
% \eqref{el:eq:24} is bounded by
% \begin{equation}
% \label{el:eq:44}
% 1 / \left( n^n (n^{\frac{n}{2}} \cdot B^n)^{n+1} \right) \geq 1 /
% \left( n^{3n^2} B^{2n^2} \right) \geq 1 / (n\cdot B)^{3\cdot n^2},
% \end{equation}
% which shows \ref{el:item:8}).
% Now we plug these values into our analysis in
% Theorem~\ref{el:thr:21}. Our initial volume $\vol(\eE_{init})$ is bounded by the
% volume of the box with side-lengths $2 (n\cdot B)^n$. Thus
% \begin{equation}
% \label{el:eq:27}
% \vol(\eE_{init}) \leq(2\cdot n\cdot B)^{n^2}.
% \end{equation}
% %
% Above we have shown that
% \begin{equation}
% \label{el:eq:38}
% L \geq 1 / (n\cdot B)^{3n^2}.
% \end{equation}
% Clearly
% \begin{equation}
% \label{el:eq:39}
% \vol(\eE_{init}) / L \leq 2^{n^2} \cdot (n \cdot B)^{4 \cdot n^2}
% \leq (2n \cdot B)^{4\cdot n^2}.
% \end{equation}
% %
% By Theorem~\ref{el:thr:21} the ellipsoid method performs
% \begin{equation}
% \label{el:eq:40}
% O\left(2\cdot n \cdot \ln \left((2n \cdot B)^{4\cdot n^2}\right) \right)
% \end{equation}
% iterations. This is bounded by
% \begin{equation}
% \label{el:eq:41}
% O(n^3 \cdot \ln (n \cdot B)).
% \end{equation}
% Now recall that $\log B$ is the number of \emph{bits} which are
% needed to encode the coefficient with the largest absolute value of
% the constraint system $Ax\leq b$ and that $n$ is the number of variables
% of this system. Therefore the expression~\eqref{el:eq:41} is polynomial
% in the binary input encoding of the system $Ax\leq b$. We conclude the
% following theorem.
% \begin{theorem}
% \label{el:thr:23}
% The ellipsoid method (exact version) performs a polynomial number
% of iterations.
% \end{theorem}
% \section{The boundedness and full-dimensionality condition}
% \label{el:sec:bound-full-dimens}
% In this section we want to show how the ellipsoid method can be used
% to solve the following problem.
% \begin{quote}
% Given a matrix $A \in \setZ^{m\times n}$ and a vector $b \in \setZ^m$, determine a
% feasible point $x^*$ in the polyhedron $P = \{ x \in \setR^n \mid Ax\leq b\}$ or
% assert that $P = \emptyset$.
% \end{quote}
% %
% \subsection{Boundedness}
% \label{el:sec:boundedness}
% We have argued that the matrix $A \in \setZ^{m\times n}$ can be assumed to have
% full column rank. So, if $P$ is not empty, then $P$ does have at least
% one vertex. The vertices are contained in the box $\{x \in \setR^n \mid
% -n^{n/2} B^n \leq x_i \leq n^{n/2} B^n,$ $i=1,\cdots,n\}$. Therefore, we can append the
% inequalities $-n^{n/2} B^n \leq x_i \leq n^{n/2} B^n$
% $(i=1,\cdots,n)$ to $Ax\leq b$ without
% changing the status of $P \neq \emptyset$ or $P = \emptyset$. Notice that the
% \emph{binary encoding length} of the new inequalities is polynomial in
% the binary encoding length of the old inequalities.
% \begin{theorem}
% \label{el:thr:25}
% The ellipsoid method can be used to decide whether a system of
% inequalities $Ax\leq b$ contains a feasible point, where $A\in\setZ^{m\times n}$
% and $b\in \setZ^m$. The number of iterations is bounded by a polynomial
% in $n$ and $\log B$, where $B$ is the largest absolute value of a
% coefficient of $A$ and $b$.
% \end{theorem}
\section{The ellipsoid method for optimization}
\label{el:sec:ellips-meth-optim}
Suppose that you want to solve a linear program
\begin{equation}
\label{el:eq:43}
\max \{ c^Tx \mid x \in \setR^n, \, Ax\leq b\}
\end{equation}
and recall that if~\eqref{el:eq:43} is bounded and feasible, then so is
its dual and the two objective values are equal. Thus, we can use the
ellipsoid method to find a point $(x,y)$ with $c^Tx = b^Ty$, $Ax\leq b$
and $A^Ty=c, y\geq0$.
However, we mentioned that the strength of the ellipsoid method lies
in the fact that we do not need to write the system $Ax\leq b$ down
explicitly. The only thing which has to be solvable is the
\emph{separation problem}. This is to be exploited in the next
exercise.
\begin{exercise}
\label{el:ex:12}
Show how to solve the optimization problem $\max\{c^Tx \mid Ax\leq b\}$
with a polynomial number of calls to an algorithm which solves the
separation problem for $Ax\leq b$. You may assume that $A$ has full
column rank and the polynomial bound on the number of calls to the
algorithm to solve the separation problem can depend on $n$ and
the largest size of a component of $A,b$ and $c$.
\end{exercise}
\section{Numerical issues}
\label{el:sec:numerical-issues}
We did not discuss the numerical details on how to implement the
ellipsoid method such that it runs in polynomial time. One issue is
crucial.
\fancybox[!]{We only want to compute with a precision which is polynomial in the input encoding! }
In the formula~\eqref{el:eq:20} the vector $b$ is defined by
taking a square root. The question thus rises on how to round the
numbers in the intermediate ellipsoids such that they can be handled
on a machine. Also one has to analyze the growth of the numbers in
the course of the algorithm. All these issues can be overcome but we
do not discuss them in this course. I would like to refer you to the
book of Alexander Schrijver~\cite{Schrijver86} for further
details. They are not difficult, but a little technical.
%\bibliographystyle{abbrv}
%\bibliography{mybib,papers,books,my_publications}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "lecture"
%%% End: