forked from duducheng/2048-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
46 lines (40 loc) · 1.58 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=(4, 1), padding=(2, 0))
self.conv2 = nn.Conv2d(64, 128, kernel_size=(1, 4), padding=(0, 2))
self.conv3 = nn.Conv2d(128, 128, kernel_size=(2, 2))
self.conv4 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding=(1, 1))
self.conv5 = nn.Conv2d(128, 128, kernel_size=(4, 4), padding=(2, 2))
self.conv6 = nn.Conv2d(128,128,kernel_size=(2,2))
self.fc1 = nn.Linear(128 * 4 * 4, 2048)
self.fc2 = nn.Linear(2048, 512)
self.fc3 = nn.Linear(512, 4)
self.batch_norm1 = nn.BatchNorm1d(128 * 4 * 4)
self.batch_norm2 = nn.BatchNorm1d(2048)
self.batch_norm3 = nn.BatchNorm1d(512)
self.initialize()
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.relu(self.conv5(x))
x = F.relu(self.conv6(x))
x = x.view(-1, 128 * 4 * 4)
x = self.batch_norm1(x)
x = F.relu(self.fc1(x))
x = self.batch_norm2(x)
x = F.relu(self.fc2(x))
x = self.batch_norm3(x)
x = self.fc3(x)
return x
def initialize(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_uniform_(m.weight, mode='fan_in')
elif isinstance(m, nn.Linear):
nn.init.kaiming_uniform_(m.weight, mode='fan_in')