forked from pycaret/pycaret
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_regression_tuning.py
114 lines (104 loc) · 3.08 KB
/
test_regression_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import pandas as pd
import pytest
import pycaret.datasets
import pycaret.regression
from pycaret.utils.generic import can_early_stop
@pytest.mark.skip(reason="no way of currently testing this")
def test_regression_tuning():
# loading dataset
data = pycaret.datasets.get_data("boston")
assert isinstance(data, pd.DataFrame)
# init setup
pycaret.regression.setup(
data,
target="medv",
train_size=0.99,
fold=2,
html=False,
session_id=123,
n_jobs=1,
)
models = pycaret.regression.compare_models(turbo=False, n_select=100)
models.append(pycaret.regression.stack_models(models[:3]))
models.append(pycaret.regression.ensemble_model(models[0]))
for model in models:
print(f"Testing model {model}")
if "Dummy" in str(model):
continue
pycaret.regression.tune_model(
model,
fold=2,
n_iter=2,
search_library="scikit-learn",
search_algorithm="random",
early_stopping=False,
)
pycaret.regression.tune_model(
model,
fold=2,
n_iter=2,
search_library="scikit-optimize",
search_algorithm="bayesian",
early_stopping=False,
)
pycaret.regression.tune_model(
model,
fold=2,
n_iter=2,
search_library="optuna",
search_algorithm="tpe",
early_stopping=False,
)
# TODO: Enable ray after fix is released
# pycaret.regression.tune_model(
# model,
# fold=2,
# n_iter=2,
# search_library="tune-sklearn",
# search_algorithm="random",
# early_stopping=False,
# )
# pycaret.regression.tune_model(
# model,
# fold=2,
# n_iter=2,
# search_library="tune-sklearn",
# search_algorithm="optuna",
# early_stopping=False,
# )
pycaret.regression.tune_model(
model,
fold=2,
n_iter=2,
search_library="optuna",
search_algorithm="tpe",
early_stopping="asha",
)
# pycaret.regression.tune_model(
# model,
# fold=2,
# n_iter=2,
# search_library="tune-sklearn",
# search_algorithm="hyperopt",
# early_stopping="asha",
# )
# pycaret.regression.tune_model(
# model,
# fold=2,
# n_iter=2,
# search_library="tune-sklearn",
# search_algorithm="bayesian",
# early_stopping="asha",
# )
if can_early_stop(model, True, True, True, {}):
pycaret.regression.tune_model(
model,
fold=2,
n_iter=2,
search_library="tune-sklearn",
search_algorithm="bohb",
early_stopping=True,
)
assert 1 == 1
if __name__ == "__main__":
test_regression_tuning()