forked from hamuchiwa/AutoRCCar
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmlp_training.py
69 lines (55 loc) · 1.82 KB
/
mlp_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
__author__ = 'zhengwang'
import cv2
import numpy as np
import glob
print 'Loading training data...'
e0 = cv2.getTickCount()
# load training data
image_array = np.zeros((1, 38400))
label_array = np.zeros((1, 4), 'float')
training_data = glob.glob('training_data/*.npz')
for single_npz in training_data:
with np.load(single_npz) as data:
print data.files
train_temp = data['train']
train_labels_temp = data['train_labels']
print train_temp.shape
print train_labels_temp.shape
image_array = np.vstack((image_array, train_temp))
label_array = np.vstack((label_array, train_labels_temp))
train = image_array[1:, :]
train_labels = label_array[1:, :]
print train.shape
print train_labels.shape
e00 = cv2.getTickCount()
time0 = (e00 - e0)/ cv2.getTickFrequency()
print 'Loading image duration:', time0
# set start time
e1 = cv2.getTickCount()
# create MLP
layer_sizes = np.int32([38400, 32, 4])
model = cv2.ANN_MLP()
model.create(layer_sizes)
criteria = (cv2.TERM_CRITERIA_COUNT | cv2.TERM_CRITERIA_EPS, 500, 0.0001)
criteria2 = (cv2.TERM_CRITERIA_COUNT, 100, 0.001)
params = dict(term_crit = criteria,
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
bp_dw_scale = 0.001,
bp_moment_scale = 0.0 )
print 'Training MLP ...'
num_iter = model.train(train, train_labels, None, params = params)
# set end time
e2 = cv2.getTickCount()
time = (e2 - e1)/cv2.getTickFrequency()
print 'Training duration:', time
# save param
model.save('mlp_xml/mlp.xml')
print 'Ran for %d iterations' % num_iter
ret, resp = model.predict(train)
prediction = resp.argmax(-1)
print 'Prediction:', prediction
true_labels = train_labels.argmax(-1)
print 'True labels:', true_labels
print 'Testing...'
train_rate = np.mean(prediction == true_labels)
print 'Train rate: %f:' % (train_rate*100)