forked from kijai/ComfyUI-MochiWrapper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmz_gguf_loader.py
232 lines (187 loc) · 6.63 KB
/
mz_gguf_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# https://github.com/MinusZoneAI/ComfyUI-CogVideoX-MZ/blob/9616415220fd09388622f40f6609e4ed81f048a5/mz_gguf_loader.py
import torch
import torch.nn as nn
import torch.nn.functional as F
class quantize_lazy_load():
def __init__(self):
self.device = None
def __enter__(self):
self.device = torch.device("meta")
self.device.__enter__()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.device.__exit__(exc_type, exc_value, traceback)
def quantize_load_state_dict(model, state_dict, device="cpu", cublas_ops=False):
if cublas_ops:
try:
from cublas_ops import cublas_half_matmul
linear_ops = cublas_half_matmul
setattr(model, "cublas_half_matmul", True)
print("Using cublas_ops")
except:
print("Failed to load cublas_ops")
raise ImportError("Install cublas_ops (https://github.com/aredden/torch-cublas-hgemm) to use cublas_ops")
else:
linear_ops = F.linear
setattr(model, "cublas_half_matmul", False)
quant_keys = []
for key in state_dict.keys():
if key.endswith(".Q4_0_qweight"):
quant_keys.append(key.replace(".Q4_0_qweight", ""))
qtype = "Q4_0"
elif key.endswith(".Q8_0_qweight"):
quant_keys.append(key.replace(".Q8_0_qweight", ""))
qtype = "Q8_0"
for name, module in model.named_modules():
if name in quant_keys:
#print(name)
q_linear = WQLinear_GGUF.from_linear(
linear=module,
device=device,
qtype=qtype,
linear_ops=linear_ops
)
set_op_by_name(model, name, q_linear)
model.to_empty(device=device)
model.load_state_dict(state_dict, strict=False)
return model
def set_op_by_name(layer, name, new_module):
levels = name.split(".")
if len(levels) > 1:
mod_ = layer
for l_idx in range(len(levels) - 1):
if levels[l_idx].isdigit():
mod_ = mod_[int(levels[l_idx])]
else:
mod_ = getattr(mod_, levels[l_idx])
setattr(mod_, levels[-1], new_module)
else:
setattr(layer, name, new_module)
class WQLinear_GGUF(nn.Module):
def __init__(
self, in_features, out_features, bias, dev, qtype, linear_ops
):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.qtype = qtype
self.linear_ops = linear_ops
qweight_shape = quant_shape_to_byte_shape(
(out_features, in_features), qtype
)
self.register_buffer(
f"{qtype}_qweight",
torch.zeros(
qweight_shape,
dtype=torch.uint8,
device=dev,
),
)
if bias:
self.register_buffer(
"bias",
torch.zeros(
(out_features),
dtype=torch.float16,
device=dev,
),
)
else:
self.bias = None
@classmethod
def from_linear(
cls, linear,
device="cpu",
qtype="Q4_0",
linear_ops=F.linear
):
q_linear = cls(
linear.in_features,
linear.out_features,
linear.bias is not None,
device,
qtype=qtype,
linear_ops=linear_ops
)
return q_linear
def extra_repr(self) -> str:
return (
"in_features={}, out_features={}, bias={}, w_bit={}, group_size={}".format(
self.in_features,
self.out_features,
self.bias is not None,
self.w_bit,
self.group_size,
)
)
@torch.no_grad()
def forward(self, x):
if self.qtype == "Q4_0":
dequant = dequantize_blocks_Q4_0(self.Q4_0_qweight, x.dtype)
elif self.qtype == "Q8_0":
dequant = dequantize_blocks_Q8_0(self.Q8_0_qweight, x.dtype)
else:
raise ValueError(f"Unknown qtype: {self.qtype}")
return self.linear_ops(x, dequant, bias=self.bias.to(x.dtype) if self.bias is not None else None)
def split_block_dims(blocks, *args):
n_max = blocks.shape[1]
dims = list(args) + [n_max - sum(args)]
return torch.split(blocks, dims, dim=1)
def quant_shape_to_byte_shape(shape, qtype) -> tuple[int, ...]:
# shape = shape[::-1]
block_size, type_size = GGML_QUANT_SIZES[qtype]
if shape[-1] % block_size != 0:
raise ValueError(
f"Quantized tensor row size ({shape[-1]}) is not a multiple of {qtype} block size ({block_size})")
return (*shape[:-1], shape[-1] // block_size * type_size)
def quant_shape_from_byte_shape(shape, qtype) -> tuple[int, ...]:
# shape = shape[::-1]
block_size, type_size = GGML_QUANT_SIZES[qtype]
if shape[-1] % type_size != 0:
raise ValueError(
f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {qtype} type size ({type_size})")
return (*shape[:-1], shape[-1] // type_size * block_size)
GGML_QUANT_SIZES = {
"Q4_0": (32, 2 + 16),
"Q8_0": (32, 2 + 32),
}
def dequantize_blocks_Q4_0(data, dtype=torch.float16):
block_size, type_size = GGML_QUANT_SIZES["Q4_0"]
data = data.to(torch.uint8)
shape = data.shape
rows = data.reshape(
(-1, data.shape[-1])
).view(torch.uint8)
n_blocks = rows.numel() // type_size
blocks = data.reshape((n_blocks, type_size))
n_blocks = blocks.shape[0]
d, qs = split_block_dims(blocks, 2)
d = d.view(torch.float16)
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor(
[0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
qs = (qs & 0x0F).reshape((n_blocks, -1)).to(torch.int8) - 8
out = (d * qs)
out = out.reshape(quant_shape_from_byte_shape(
shape,
qtype="Q4_0",
)).to(dtype)
return out
def dequantize_blocks_Q8_0(data, dtype=torch.float16):
block_size, type_size = GGML_QUANT_SIZES["Q8_0"]
data = data.to(torch.uint8)
shape = data.shape
rows = data.reshape(
(-1, data.shape[-1])
).view(torch.uint8)
n_blocks = rows.numel() // type_size
blocks = data.reshape((n_blocks, type_size))
n_blocks = blocks.shape[0]
d, qs = split_block_dims(blocks, 2)
d = d.view(torch.float16).to(torch.float32)
qs = qs.view(torch.int8).to(torch.float32)
out = (d * qs)
out = out.reshape(quant_shape_from_byte_shape(
shape,
qtype="Q8_0",
)).to(dtype)
return out