forked from allenai/OLMo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
253 lines (215 loc) · 9.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""Run this script with 'torchrun'."""
import gzip
import logging
import sys
from pathlib import Path
from typing import Optional, TextIO
import torch
import torch.distributed as dist
import wandb
from packaging import version
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from olmo.config import CheckpointType, TrainConfig
from olmo.data import build_train_dataloader
from olmo.eval import build_evaluators
from olmo.exceptions import OlmoCliError, OlmoConfigurationError
from olmo.model import Olmo
from olmo.optim import BoltOnWarmupScheduler, build_optimizer, build_scheduler
from olmo.torch_util import (
barrier,
get_default_device,
get_global_rank,
get_local_rank,
get_world_size,
peak_gpu_memory,
seed_all,
)
from olmo.train import Trainer
from olmo.util import clean_opt, log_extra_field, prepare_cli_environment
log = logging.getLogger("train")
def main(cfg: TrainConfig) -> None:
# Ensure run name set.
if cfg.run_name is None:
raise OlmoConfigurationError("--run_name is required")
log_extra_field("run_name", cfg.run_name)
# Sanity check
if cfg.reset_optimizer_state and cfg.load_path is None:
log.warning(
"You want to reset the optimizer state, but we're not loading from the checkpoint. The"
"setting has no effect."
)
barrier()
# Set CUDA device.
torch.cuda.set_device(f"cuda:{get_local_rank()}")
device = torch.device("cuda")
# Fill some configuration options.
cfg.model.precision = cfg.precision
cfg.device_train_batch_size = cfg.global_train_batch_size // get_world_size()
assert cfg.device_train_batch_size is not None # for mypy
cfg.device_train_grad_accum = cfg.device_train_batch_size // cfg.device_train_microbatch_size
if cfg.optimizer.no_decay_norm_and_bias is not None:
log.warning(
"You set the deprecated config option `no_decay_norm_and_bias`. For compatibility, this"
"setting will take precedence over all other weight decay configurations. Please change"
"your config to use `decay_norm_and_bias` and `decay_embeddings` instead."
)
cfg.optimizer.decay_norm_and_bias = not cfg.optimizer.no_decay_norm_and_bias
cfg.optimizer.decay_embeddings = not cfg.optimizer.no_decay_norm_and_bias
cfg.optimizer.no_decay_norm_and_bias = None # So nobody uses this by accident.
# Display and save configuration.
if get_global_rank() == 0:
if cfg.data.paths is not None and len(cfg.data.paths) < 50:
log.info("Configuration:")
log.info(cfg)
if not cfg.dry_run and (cfg.load_path is None or Path(cfg.load_path).parent != Path(cfg.save_folder)):
# Save config.
save_path = Path(cfg.save_folder) / "config.yaml"
if save_path.is_file() and not cfg.save_overwrite:
raise OlmoConfigurationError(f"{save_path} already exists, use --save_overwrite to overwrite")
else:
log.info(f"Saving config to {save_path}")
save_path.parent.mkdir(exist_ok=True, parents=True)
cfg.save(save_path)
del save_path
barrier()
# Maybe start W&B run.
if cfg.wandb is not None and (get_global_rank() == 0 or not cfg.wandb.rank_zero_only):
wandb_dir = Path(cfg.save_folder) / "wandb"
wandb_dir.mkdir(parents=True, exist_ok=True)
wandb.init(
dir=wandb_dir,
project=cfg.wandb.project,
entity=cfg.wandb.entity,
group=cfg.wandb.group,
name=cfg.wandb.name,
tags=cfg.wandb.tags,
config=cfg.asdict(exclude=["wandb"]),
)
barrier()
# Set seed.
seed_all(cfg.seed)
# Construct data loader.
train_loader = build_train_dataloader(cfg)
# Construct evaluators.
evaluators = build_evaluators(cfg, device)
barrier()
# Initialize the model.
log.info("Building model...")
olmo_model = Olmo(cfg.model)
log.info(f"Total number of parameters: {olmo_model.num_params():,d}")
log.info(f"Number of non-embedding parameters: {olmo_model.num_params(include_embedding=False):,d}")
log.info(f"Peak GPU Memory (MB) before FSDP: {int(peak_gpu_memory() or 0)}")
olmo_model.set_activation_checkpointing(cfg.activation_checkpointing)
# Wrap the model in FSDP.
log.info("Wrapping model with FDSP...")
wrap_policy = olmo_model.get_fsdp_wrap_policy(cfg.fsdp.wrapping_strategy)
if version.parse(torch.__version__) >= version.parse("2.1.0"):
# This prevents any parameters from being initialized twice
def dummy_init_fn(module: torch.nn.Module) -> None:
module.to_empty(device=get_default_device())
param_init_fn = dummy_init_fn
else:
param_init_fn = None
fsdp_model = FSDP(
olmo_model,
sharding_strategy=cfg.fsdp.sharding_strategy,
mixed_precision=cfg.fsdp_precision,
auto_wrap_policy=wrap_policy,
use_orig_params=cfg.fsdp.use_orig_params, # needed for compile and some of our optimizer/parameter metrics
limit_all_gathers=True,
device_id=get_local_rank(),
param_init_fn=param_init_fn,
)
# when param_init_fn is None, FSDP will call reset_parameters() automatically
if param_init_fn is not None:
olmo_model.reset_parameters()
log.info(f"Peak GPU Memory (MB) after FSDP: {int(peak_gpu_memory() or 0)}")
log.info("Model:")
log.info(fsdp_model)
# Construct optimizer and learning rate scheduler.
optim = build_optimizer(cfg, fsdp_model)
scheduler = build_scheduler(cfg)
# Data indices file.
indices_file: Optional[TextIO] = None
if cfg.save_data_indices:
indices_file_path = Path(cfg.save_folder) / f"data-indices/rank{get_global_rank()}.tsv.gz"
if indices_file_path.exists() and not cfg.save_overwrite:
raise OlmoConfigurationError(f"{indices_file_path} already exists, use --save_overwrite to overwrite")
indices_file_path.parent.mkdir(exist_ok=True, parents=True)
indices_file = gzip.open(indices_file_path, "wt")
# Consolidate components into `Trainer` object.
with Trainer(
cfg=cfg,
epoch=cfg.epoch,
model=olmo_model,
fsdp_model=fsdp_model,
optim=optim,
scheduler=scheduler,
train_loader=train_loader,
device=device,
evaluators=evaluators,
indices_file=indices_file,
) as trainer:
if not cfg.dry_run and not cfg.no_pre_train_checkpoint and cfg.load_path is None:
checkpoint_type = (
CheckpointType.sharded if cfg.save_num_checkpoints_to_keep != 0 else CheckpointType.unsharded
)
# We save a checkpoint up-front to make sure this won't fail (due to disk space or whatever).
log.info("Saving pre-train checkpoint...")
checkpoint_path, local_checkpoint_cache = trainer.save_checkpoint(checkpoint_type=checkpoint_type)
log.info(f"Checkpoint saved to {checkpoint_path}")
# And they we verify that we can load it.
log.info("Attempting to load pre-train checkpoint...")
trainer.restore_checkpoint(
checkpoint_path, checkpoint_type=checkpoint_type, local_cache=local_checkpoint_cache
)
log.info("Checkpoint successfully loaded")
# NOTE: https://github.com/allenai/LLM/issues/233
# log.info("Removing pre-train checkpoint...")
# trainer.remove_checkpoint(checkpoint_type=checkpoint_type)
# log.info("Successfully removed checkpoint")
if cfg.load_path is not None:
log.info(f"Loading checkpoint from {cfg.load_path}...")
trainer.restore_checkpoint(
cfg.load_path,
load_optimizer_state=not cfg.reset_optimizer_state,
sharded_checkpointer=cfg.load_path_sharded_checkpointer,
)
log.info("Checkpoint successfully loaded")
# If we have to, set a new scheduler:
if cfg.reset_optimizer_state:
trainer.scheduler = BoltOnWarmupScheduler.wrap(
trainer.scheduler,
trainer.global_step,
trainer.global_step + cfg.scheduler.t_warmup,
)
if cfg.force_save_unsharded:
log.info("Saving unsharded checkpoint...")
checkpoint_path, _ = trainer.save_checkpoint(checkpoint_type=CheckpointType.unsharded)
log.info(f"Unsharded checkpoint saved to {checkpoint_path}")
if cfg.compile is not None:
# TODO (epwalsh): trying to compile the whole train step results in a compile-time error from within
# the optimizer. We should investigate this further at some point.
# trainer.train_step = torch.compile(trainer.train_step, **cfg.compile.asdict())
trainer.train_batch = torch.compile(trainer.train_batch, **cfg.compile.asdict()) # type: ignore
# TODO (epwalsh): compiling the `eval_batch()` method is a little sketchy since the inputs will look
# different for different eval tasks. That might be okay, but it might not be.
# trainer.eval_batch = torch.compile(trainer.eval_batch, **cfg.compile.asdict()) # type: ignore
# Alternatively, could just do this:
# trainer.fsdp_model = torch.compile(trainer.fsdp_model, **cfg.compile.asdict())
if not cfg.dry_run:
log.info("Starting training...")
trainer.fit()
log.info("Training complete")
else:
log.info("Dry run complete")
if __name__ == "__main__":
# Initialize process group.
dist.init_process_group(backend="nccl")
prepare_cli_environment()
try:
yaml_path, args_list = sys.argv[1], sys.argv[2:]
except IndexError:
raise OlmoCliError(f"Usage: {sys.argv[0]} [CONFIG_PATH] [OPTIONS]")
cfg = TrainConfig.load(yaml_path, [clean_opt(s) for s in args_list])
main(cfg)