Skip to content
forked from yzhao062/pyod

A Comprehensive and Scalable Python Library for Outlier Detection (Anomaly Detection)

License

Notifications You must be signed in to change notification settings

kranthi-nord/pyod

Repository files navigation

Python Outlier Detection (PyOD)

PyPI version Documentation Status Build Status Coverage Status GitHub stars GitHub forks Binder

PyOD is a comprehensive Python toolkit to identify outlying objects in multivariate data with both unsupervised and supervised approaches. This exciting yet challenging field is commonly referred as Outlier Detection or Anomaly Detection . The toolkit has been successfully used in various academic researches [4, 8] and commercial products. Unlike existing libraries, PyOD provides:

  • Unified and consistent APIs across various anomaly detection algorithms for easy use.
  • Compatibility with both Python 2 and 3. All implemented algorithms are also scikit-learn compatible.
  • Advanced functions, e.g., Outlier Ensemble Frameworks to combine multiple detectors.
  • Detailed API Reference, Interactive Examples in Jupyter Notebooks for better reliability.

Table of Contents:


Key Links & Resources


Quick Introduction

PyOD toolkit consists of three major groups of functionalities: (i) outlier detection algorithms; (ii) outlier ensemble frameworks and (iii) outlier detection utility functions.

Individual Detection Algorithms:

  1. Linear Models for Outlier Detection:

    1. PCA: Principal Component Analysis use the sum of weighted projected distances to the eigenvector hyperplane as the outlier outlier scores) [10]
    2. MCD: Minimum Covariance Determinant (use the mahalanobis distances as the outlier scores) [11, 12]
    3. One-Class Support Vector Machines [3]
  2. Proximity-Based Outlier Detection Models:

    1. LOF: Local Outlier Factor [1]
    2. kNN: k Nearest Neighbors (use the distance to the kth nearest neighbor as the outlier score)
    3. Average kNN Outlier Detection (use the average distance to k nearest neighbors as the outlier score)
    4. Median kNN Outlier Detection (use the median distance to k nearest neighbors as the outlier score)
    5. HBOS: Histogram-based Outlier Score [5]
  3. Probabilistic Models for Outlier Detection:

    1. ABOD: Angle-Based Outlier Detection [7]
    2. FastABOD: Fast Angle-Based Outlier Detection using approximation [7]
  4. Outlier Ensembles and Combination Frameworks

    1. Isolation Forest [2]
    2. Feature Bagging [9]

Outlier Detector/Scores Combination Frameworks:

  1. Feature Bagging: build various detectors on random selected features [9]
  2. Average & Weighted Average: simply combine scores by averaging [6]
  3. Maximization: simply combine scores by taking the maximum across all base detectors [6]
  4. Average of Maximum (AOM) [6]
  5. Maximum of Average (MOA) [6]
  6. Threshold Sum (Thresh) [6]

Utility Functions for Outlier Detection:

  1. score_to_lable(): convert raw outlier scores to binary labels
  2. precision_n_scores(): one of the popular evaluation metrics for outlier mining (precision @ rank n)
  3. generate_data(): generate pseudo data for outlier detection experiment
  4. wpearsonr(): weighted pearson is useful in pseudo ground truth generation

Comparison of all implemented models are made available below: (Figure, Code, Jupyter Notebooks):

For Jupyter Notebooks, please navigate to "/notebooks/Compare All Models.ipynb"

Comparision_of_All


Installation

It is recommended to use pip for installation. Please make sure the latest version is installed since PyOD is currently updated on a daily basis:

pip install pyod
pip install --upgrade pyod # make sure the latest version is installed!

Alternatively,install from github directly (NOT Recommended)

git clone https://github.com/yzhao062/pyod.git
python setup.py install

Required Dependency:

  • Python 2.7, 3.4, 3.5 or 3.6
  • numpy>=1.13
  • scipy>=0.19.1
  • scikit_learn>=0.19.1

Optional Dependency for examples and tests:

  • matplotlib
  • nose
  • pytest

API Cheatsheet & Reference

Full API Reference: (http://pyod.readthedocs.io/en/latest/api.html). API cheatsheet for all detectors:

  • fit(X): Fit detector.
  • fit_predict(X): Fit detector and predict if a particular sample is an outlier or not.
  • fit_predict_score(X, y): Fit, predict and then evaluate with predefined metrics (ROC and precision @ rank n).
  • decision_function(X): Predict anomaly score of X of the base classifiers.
  • predict(X): Predict if a particular sample is an outlier or not. The model must be fitted first.
  • predict_proba(X): Predict the probability of a sample being outlier. The model must be fitted first.

Key Attributes of a fitted model:

  • decision_scores_: The outlier scores of the training data. The higher, the more abnormal. Outliers tend to have higher scores.
  • labels_: The binary labels of the training data. 0 stands for inliers and 1 for outliers/anomalies.

Full package structure can be found below:


Quick Start for Outlier Detection

See examples directory for more demos. "examples/knn_example.py" demonstrates the basic APIs of PyOD using kNN detector. It is noted the APIs for other detectors are similar.

  1. Initialize a kNN detector, fit the model, and make the prediction.
    from pyod.models.knn import KNN   # kNN detector
    
    # train kNN detector
    clf_name = 'KNN'
    clf = KNN()
    clf.fit(X_train)
    
    # get the prediction label and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores
    
    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
    y_test_scores = clf.decision_function(X_test)  # outlier scores
  2. Evaluate the prediction by ROC and Precision@rank n (p@n):
    # evaluate and print the results
    print("\nOn Training Data:")
    evaluate_print(clf_name, y_train, y_train_scores)
    print("\nOn Test Data:")
    evaluate_print(clf_name, y_test, y_test_scores)
  3. See a sample output & visualization
    On Training Data:
    KNN ROC:1.0, precision @ rank n:1.0
    
    On Test Data:
    KNN ROC:0.9989, precision @ rank n:0.9
    visualize(clf_name, X_train, y_train, X_test, y_test, y_train_pred,
              y_test_pred, show_figure=True, save_figure=False)

Visualization (knn_figure): kNN example figure


Quick Start for Combining Outlier Scores from Various Base Detectors

"examples/comb_example.py" illustrates the APIs for combining multiple base detectors (Code, Jupyter Notebooks).

For Jupyter Notebooks, please navigate to "/notebooks/Model Combination.ipynb"

Given we have n individual outlier detectors, each of them generates an individual score for all samples. The task is to combine the outputs from these detectors effectively Key Step: conducting Z-score normalization on raw scores before the combination. Four combination mechanisms are shown in this demo:

  1. Average: take the average of all base detectors.
  2. maximization : take the maximum score across all detectors as the score.
  3. Average of Maximum (AOM): first randomly split n detectors in to p groups. For each group, use the maximum within the group as the group output. Use the average of all group outputs as the final output.
  4. Maximum of Average (MOA): similarly to AOM, the same grouping is introduced. However, we use the average of a group as the group output, and use maximum of all group outputs as the final output. To better understand the merging techniques, refer to [6].

The walkthrough of the code example is provided:

  1. Import models and generate sample data

    from pyod.models.knn import KNN
    from pyod.models.combination import aom, moa, average, maximization
    from pyod.utils.data import generate_data
    
    X, y = generate_data(train_only=True)  # load data
  2. First initialize 20 kNN outlier detectors with different k (10 to 200), and get the outlier scores:

    # initialize 20 base detectors for combination
    k_list = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,
                150, 160, 170, 180, 190, 200]
    
    train_scores = np.zeros([X_train.shape[0], n_clf])
    test_scores = np.zeros([X_test.shape[0], n_clf])
    
    for i in range(n_clf):
        k = k_list[i]
    
        clf = KNN(n_neighbors=k, method='largest')
        clf.fit(X_train_norm)
    
        train_scores[:, i] = clf.decision_scores_
        test_scores[:, i] = clf.decision_function(X_test_norm)
  3. Then the output codes are standardized into zero mean and unit variance before combination.

    from pyod.utils.utility import standardizer
    train_scores_norm, test_scores_norm = standardizer(train_scores, test_scores)
  4. Then four different combination algorithms are applied as described above:

    comb_by_average = average(test_scores_norm)
    comb_by_maximization = maximization(test_scores_norm)
    comb_by_aom = aom(test_scores_norm, 5) # 5 groups
    comb_by_moa = moa(test_scores_norm, 5)) # 5 groups
  5. Finally, all four combination methods are evaluated with ROC and Precision @ Rank n:

    Combining 20 kNN detectors
    Combination by Average ROC:0.9194, precision @ rank n:0.4531
    Combination by Maximization ROC:0.9198, precision @ rank n:0.4688
    Combination by AOM ROC:0.9257, precision @ rank n:0.4844
    Combination by MOA ROC:0.9263, precision @ rank n:0.4688

Reference

[1] Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J., 2000, May. LOF: identifying density-based local outliers. In ACM SIGMOD Record, pp. 93-104. ACM.

[2] Liu, F.T., Ting, K.M. and Zhou, Z.H., 2008, December. Isolation forest. In ICDM '08, pp. 413-422. IEEE.

[3] Ma, J. and Perkins, S., 2003, July. Time-series novelty detection using one-class support vector machines. In IJCNN' 03, pp. 1741-1745. IEEE.

[4] Y. Zhao and M.K. Hryniewicki, "DCSO: Dynamic Combination of Detector Scores for Outlier Ensembles," ACM SIGKDD Workshop on Outlier Detection De-constructed, 2018. Submitted, under review.

[5] Goldstein, M. and Dengel, A., 2012. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. In KI-2012: Poster and Demo Track, pp.59-63.

[6] Aggarwal, C.C. and Sathe, S., 2015. Theoretical foundations and algorithms for outlier ensembles.ACM SIGKDD Explorations Newsletter, 17(1), pp.24-47.

[7] Kriegel, H.P. and Zimek, A., 2008, August. Angle-based outlier detection in high-dimensional data. In KDD '08, pp. 444-452. ACM.

[8] Y. Zhao and M.K. Hryniewicki, "XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning," IEEE International Joint Conference on Neural Networks, 2018.

[9] Lazarevic, A. and Kumar, V., 2005, August. Feature bagging for outlier detection. In KDD '05. 2005.

[10] Shyu, M.L., Chen, S.C., Sarinnapakorn, K. and Chang, L., 2003. A novel anomaly detection scheme based on principal component classifier. MIAMI UNIV CORAL GABLES FL DEPT OF ELECTRICAL AND COMPUTER ENGINEERING.

[11] Rousseeuw, P.J. and Driessen, K.V., 1999. A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3), pp.212-223.

[12] Hardin, J. and Rocke, D.M., 2004. Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Computational Statistics & Data Analysis, 44(4), pp.625-638.

About

A Comprehensive and Scalable Python Library for Outlier Detection (Anomaly Detection)

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 98.9%
  • Jupyter Notebook 1.1%