forked from google/XNNPACK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtruncation.cc
100 lines (81 loc) · 2.93 KB
/
truncation.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include <xnnpack.h>
#include <benchmark/benchmark.h>
#include "bench/utils.h"
static void xnnpack_truncation_f32(benchmark::State& state) {
const size_t batch_size = state.range(0);
const size_t channels = state.range(1);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
std::vector<float> input(batch_size * channels);
std::vector<float> output(batch_size * channels);
std::generate(input.begin(), input.end(), std::ref(f32rng));
std::fill(output.begin(), output.end(), std::nanf(""));
xnn_status status = xnn_initialize(nullptr /* allocator */);
if (status != xnn_status_success) {
state.SkipWithError("failed to initialize XNNPACK");
return;
}
xnn_operator_t truncation_op = nullptr;
status = xnn_create_truncation_nc_f32(
channels, channels /* input stride */, channels /* output stride */,
0 /* flags */, &truncation_op);
if (status != xnn_status_success || truncation_op == nullptr) {
state.SkipWithError("failed to create Truncation operator");
return;
}
status = xnn_setup_truncation_nc_f32(
truncation_op,
batch_size,
input.data(), output.data(),
nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to setup Truncation operator");
return;
}
for (auto _ : state) {
status = xnn_run_operator(truncation_op, nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to run Truncation operator");
return;
}
}
status = xnn_delete_operator(truncation_op);
if (status != xnn_status_success) {
state.SkipWithError("failed to delete Truncation operator");
return;
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
const size_t elements_per_iteration = batch_size * channels;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
static void CharacteristicArguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "C"});
int32_t c = 16;
for (int32_t n = 224; n >= 7; n /= 2) {
b->Args({n * n, c});
c *= 2;
}
}
BENCHMARK(xnnpack_truncation_f32)->Apply(CharacteristicArguments)->UseRealTime();
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif