Skip to content

Latest commit

 

History

History
310 lines (239 loc) · 8.24 KB

README.md

File metadata and controls

310 lines (239 loc) · 8.24 KB

Functions

Auto-generated documentation for orca.spark.functions module.

addColumnPrefix

[find in source code]

def addColumnPrefix(
    df: DataFrame,
    prefix: str = 'prefix',
    colsList: List = [],
) -> DataFrame:

Adds a prefix to Column names

Arguments

df : pyspark DataFrame prefix : prefix string which needs to be added default value will be prefix colsList : Specify the column names to which only the prefix will be added. If nothing is passed, all columns will have the prefix. Default value will be empty list

Returns

pyspark Dataframe

Usage :

>>> df = spark.createDataFrame([{'id': 1, 'value': 1,'amount':2}, {'id': 2, 'value': 2,'amount':3}])
>>> addColumnPrefix(df,prefix='test').show()
        +-----------+-------+----------+
        |test_amount|test_id|test_value|
        +-----------+-------+----------+
        |          2|      1|         1|
        |          3|      2|         2|
        +-----------+-------+----------+
>>> addColumnPrefix(data,prefix='test').show()
        +-----------+---+----------+
        |test_amount| id|test_value|
        +-----------+---+----------+
        |          2|  1|         1|
        |          3|  2|         2|
        +-----------+---+----------+

addColumnSuffix

[find in source code]

def addColumnSuffix(
    df: DataFrame,
    suffix: str = 'suffix',
    colsList: List = [],
) -> DataFrame:

Adds a suffix to Column names

Arguments

df : pyspark DataFrame suffix : suffix string which needs to be added default value will be suffix colsList : Specify the column names to which only the suffix will be added. If nothing is passed, all columns will have the suffix. Default value will be empty list

Returns

pyspark Dataframe

Usage :

>>> df = spark.createDataFrame([{'id': 1, 'value': 1,'amount':2}, {'id': 2, 'value': 2,'amount':3}])
>>> addColumnSuffix(df,suffix='test').show()
        +-----------+-------+----------+
        |amount_test|id_test|value_test|
        +-----------+-------+----------+
        |          2|      1|         1|
        |          3|      2|         2|
        +-----------+-------+----------+
>>> addColumnSuffix(df,suffix='test',colsList=['id']).show()
        +-----------+---+----------+
        |amount_test| id|value_test|
        +-----------+---+----------+
        |          2|  1|         1|
        |          3|  2|         2|
        +-----------+---+----------+

multijoin

[find in source code]

def multijoin(
    dfs: List[DataFrame],
    on: str = None,
    how: str = None,
    coalesce: List[str] = None,
):

Join multiple dataframes.

Arguments

dfs (list[DataFrame]).

  • on - same as pyspark.sql.DataFrame.join.
  • how - same as pyspark.sql.DataFrame.join.
  • coalesce list[str] - column names to disambiguate by coalescing across the input dataframes. A column must be of the same type across all dataframes that define it; if different types appear coalesce will do a best-effort attempt in merging them. The selected value is the first non-null one in order of appearance of the dataframes in the input list. Default is None - don't coalesce any ambiguous columns.

Returns

pyspark.sql.DataFrame or None if provided dataframe list is empty.

Examples

Assume we have two DataFrames, the first is first = [{'id': 1, 'value': None}, {'id': 2, 'value': 2}] and the second is second = [{'id': 1, 'value': 1}, {'id': 2, 'value': 22}] Then collecting the DataFrame produced by multijoin([first, second], on='id', how='inner', coalesce=['value'])

  • yields *[{'id'* - 1, 'value': 1}, {'id': 2, 'value': 2}].

performJoin

[find in source code]

def performJoin(
    dfs: List[DataFrame],
    conditionsList: List = [],
    joinsList: List[str] = ['inner'],
) -> DataFrame:

Joins multiple dataframes with varying conditions and join types for each join

Arguments

dfs : list of dataframes to be joined, hint can be given to each dataframe List(df1,df2,df3,df4.hint('broadcast')) conditionList : list of conditions to join the dataframes List(df1.id==df2.id,df3.id==df4.id) can be empty joinsList : list of types of joins between dataframes

Returns

 DataFrame

Usage :

>>> first  = spark.createDataFrame([{'first_id': 1, 'value': None}, {'first_id': 2, 'value': 2}])
>>> second = spark.createDataFrame([{'second_id': 1, 'value': 1}, {'second_id': 2, 'value': 22}])
>>> third  = spark.createDataFrame([{'third_id': 1, 'value': 10}, {'third_id': 2, 'value': 226}])
>>> performJoin([first,second.hint("broadcast"),third],[first.first_id==second.second_id,
                             second.second_id==third.third_id]).show()
    +--------+-----+---------+-----+--------+-----+
    |first_id|value|second_id|value|third_id|value|
    +--------+-----+---------+-----+--------+-----+
    |       1| null|        1|    1|       1|   10|
    |       2|    2|        2|   22|       2|  226|
    +--------+-----+---------+-----+--------+-----+

removeColumnSpaces

[find in source code]

def removeColumnSpaces(df: DataFrame) -> DataFrame:

Adds a suffix to Column names

Arguments

df : pyspark DataFrame

Returns

pyspark Dataframe

Usage :

>>> df = spark.createDataFrame([{'id': 1, 'goods value': 1,'total amount':2}])
>>> removeColumnSpaces(df).show()
    +----------+---+-----------+
    |goodsvalue| id|totalamount|
    +----------+---+-----------+
    |         1|  1|          2|
    +----------+---+-----------+

singleJoin

[find in source code]

def singleJoin(
    left: DataFrame,
    right: DataFrame,
    condition=None,
    joinType: str = None,
) -> DataFrame:

Performs a join between left and right dataframes

Arguments

left : pyspark DataFrame right : pyspark DataFrame condition : condition to join dataframes joinType : type of join, default will be inner

Returns

DataFrame

withColumnsRenamedFunc

[find in source code]

def withColumnsRenamedFunc(df: DataFrame, func: Callable) -> DataFrame:

Changes some of the column names with supplied function

Arguments

df : pyspark DataFrame func : Function

Returns

pyspark Dataframe

Usage :

>>> df = spark.createDataFrame([{'id': 1, 'value': 1,'amount':2}])
>>> def renameF(s):
        if 'amount' in s:
            return 'cash'
        else:
            return s
>>> withColumnsRenamedFunc(df,renameF).show()
    +----+---+-----+
    |cash| id|value|
    +----+---+-----+
    |   2|  1|    1|
    |   3|  2|    2|
    +----+---+-----+

withSomeColumnsRenamed

[find in source code]

def withSomeColumnsRenamed(df: DataFrame, mapping: Dict) -> DataFrame:

Changes some of the column names with supplied dictionary

Arguments

df : pyspark DataFrame mapping : Dict

Returns

pyspark Dataframe

Usage :

>>> df = spark.createDataFrame([{'id': 1, 'value': 1,'amount':2}])
>>> mapping = {'amount':'cash','id':'uniqueID','value':'transaction'}
>>> withSomeColumnsRenamed(df,mapping).show()
    +----+--------+-----------+
    |cash|uniqueID|transaction|
    +----+--------+-----------+
    |   2|       1|          1|
    +----+--------+-----------+