forked from SCLBD/BackdoorBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visual_network.py
executable file
·151 lines (120 loc) · 5.8 KB
/
visual_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import sys
import os
import yaml
import torch
from torchviz import make_dot, make_dot_from_trace
sys.path.append("../")
sys.path.append(os.getcwd())
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.aggregate_block.fix_random import fix_random
from visual_utils import *
# Basic setting: args
args = get_args()
with open(args.yaml_path, "r") as stream:
config = yaml.safe_load(stream)
config.update({k: v for k, v in args.__dict__.items() if v is not None})
args.__dict__ = config
args = preprocess_args(args)
fix_random(int(args.random_seed))
save_path_attack = "./record/" + args.result_file_attack
visual_save_path = save_path_attack + "/visual"
# Load model
model_visual = generate_cls_model(args.model, args.num_classes)
# make visual_save_path if not exist
os.mkdir(visual_save_path) if not os.path.exists(visual_save_path) else None
############## Model Structure ##################
print("Plotting Model Structure using pytorchviz")
# pip install -U git+https://github.com/szagoruyko/pytorchviz.git@master
x = torch.zeros([10, args.input_channel, args.input_height, args.input_width])
dot = make_dot(model_visual(x), params=dict(model_visual.named_parameters()))
dot.format = "png"
dot.render(f'structure_{args.model}', directory=visual_save_path, cleanup=True)
print(f'Save to {visual_save_path + f"/structure_{args.model}"}.png')
# Another way to show model structure using hiddenlayer
print("Plotting Model Structure using hiddenlayer")
import hiddenlayer as hl
def build_dot(graph, rankdir = 'TB'):
"""Generate a GraphViz Dot graph.
Returns a GraphViz Digraph object.
This is modified from https://github.com/waleedka/hiddenlayer/blob/master/hiddenlayer/graph.py
by changing rankdir="TB" to allow a vertical plot.
see https://github.com/waleedka/hiddenlayer/issues/63
args:
graph: hiddlen layer graph
rankdir: direction for show plot. Left to right (LR) or Top to down (TD).
"""
from graphviz import Digraph
# Build GraphViz Digraph
dot = Digraph()
dot.attr("graph",
bgcolor=graph.theme["background_color"],
color=graph.theme["outline_color"],
fontsize=graph.theme["font_size"],
fontcolor=graph.theme["font_color"],
fontname=graph.theme["font_name"],
margin=graph.theme["margin"],
rankdir=rankdir,
pad=graph.theme["padding"])
dot.attr("node", shape="box",
style="filled", margin="0,0",
fillcolor=graph.theme["fill_color"],
color=graph.theme["outline_color"],
fontsize=graph.theme["font_size"],
fontcolor=graph.theme["font_color"],
fontname=graph.theme["font_name"])
dot.attr("edge", style="solid",
color=graph.theme["outline_color"],
fontsize=graph.theme["font_size"],
fontcolor=graph.theme["font_color"],
fontname=graph.theme["font_name"])
for k, n in graph.nodes.items():
label = "<tr><td cellpadding='6'>{}</td></tr>".format(n.title)
if n.caption:
label += "<tr><td>{}</td></tr>".format(n.caption)
if n.repeat > 1:
label += "<tr><td align='right' cellpadding='2'>x{}</td></tr>".format(n.repeat)
label = "<<table border='0' cellborder='0' cellpadding='0'>" + label + "</table>>"
dot.node(str(k), label)
for a, b, label in graph.edges:
if isinstance(label, (list, tuple)):
label = "x".join([str(l or "?") for l in label])
dot.edge(str(a), str(b), label)
return dot
transforms="default"
'''
For AdaptivePool, ONNX only support pool with output_size = 1 for all dimensions or output shape is a factor of input shape.
It's recommended to replace the adaptive pooling with regular pooling if possible.
Otherwise, you can uncomment the following code to use a self-defined pooling layer to run it anyway.
'''
# for name, module in model_visual.named_modules():
# if isinstance(module, torch.nn.AdaptiveAvgPool2d) or isinstance(module, torch.nn.AdaptiveMaxPool2d):
# # hook a function to get input shape
# def shape_hook(module, input_, output_):
# global out_shape
# out_shape = output_.shape
# return None
# h = module.register_forward_hook(shape_hook)
# model_visual(torch.zeros([1, args.input_channel, args.input_height, args.input_width]))
# class pseduo_pool(torch.nn.AdaptiveAvgPool2d):
# def __init__(self) -> None:
# super().__init__(output_size=(1,1))
# def forward(self, input):
# pseduo_out = torch.zeros(out_shape) * torch.sum(input)
# return pseduo_out
# setattr(model_visual, name, pseduo_pool())
# print(f"replace {module} by s self-defined pool layer.")
# model_visual(torch.zeros([1, args.input_channel, args.input_height, args.input_width]))
# transforms = [
# # Fold the self-defined operations into SelfDefined Pooling
# # may cause name problem if you have the same operation pattern in your model
# hl.transforms.Fold("ReduceSum > Mul", "AvgPool"),
# hl.transforms.Fold("Constant > AvgPool", "AvgPool2", name = "Self-Defined Pooling")
# ]
try:
graph = hl.build_graph(model_visual, torch.zeros([10, args.input_channel, args.input_height, args.input_width]), transforms=transforms)
dot = build_dot(graph)
dot.format = "png"
dot.render(f'structure_{args.model}_hl', directory=visual_save_path, cleanup=True)
print(f'Save to {visual_save_path + f"/structure_{args.model}_hl"}.png')
except:
print("Unsupported operation in hiddenlayer, recommend to use pytorchviz only.")