forked from nagadomi/waifu2x
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrcnn.lua
700 lines (653 loc) · 22.9 KB
/
srcnn.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
require 'w2nn'
-- ref: https://arxiv.org/abs/1502.01852
-- ref: https://arxiv.org/abs/1501.00092
-- ref: https://arxiv.org/abs/1709.01507
-- ref: https://arxiv.org/abs/1505.04597
local srcnn = {}
local function msra_filler(mod)
local fin = mod.kW * mod.kH * mod.nInputPlane
local fout = mod.kW * mod.kH * mod.nOutputPlane
stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
mod.weight:normal(0, stdv)
mod.bias:zero()
end
local function identity_filler(mod)
assert(mod.nInputPlane <= mod.nOutputPlane)
mod.weight:normal(0, 0.01)
mod.bias:zero()
local num_groups = mod.nInputPlane -- fixed
local filler_value = num_groups / mod.nOutputPlane
local in_group_size = math.floor(mod.nInputPlane / num_groups)
local out_group_size = math.floor(mod.nOutputPlane / num_groups)
local x = math.floor(mod.kW / 2)
local y = math.floor(mod.kH / 2)
for i = 0, num_groups - 1 do
for j = i * out_group_size, (i + 1) * out_group_size - 1 do
for k = i * in_group_size, (i + 1) * in_group_size - 1 do
mod.weight[j+1][k+1][y+1][x+1] = filler_value
end
end
end
end
function nn.SpatialConvolutionMM:reset(stdv)
msra_filler(self)
end
function nn.SpatialFullConvolution:reset(stdv)
msra_filler(self)
end
function nn.SpatialDilatedConvolution:reset(stdv)
identity_filler(self)
end
if cudnn and cudnn.SpatialConvolution then
function cudnn.SpatialConvolution:reset(stdv)
msra_filler(self)
end
function cudnn.SpatialFullConvolution:reset(stdv)
msra_filler(self)
end
if cudnn.SpatialDilatedConvolution then
function cudnn.SpatialDilatedConvolution:reset(stdv)
identity_filler(self)
end
end
end
function nn.SpatialConvolutionMM:clearState()
if self.gradWeight then
self.gradWeight:resize(self.nOutputPlane, self.nInputPlane * self.kH * self.kW):zero()
end
if self.gradBias then
self.gradBias:resize(self.nOutputPlane):zero()
end
return nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput', 'output', 'gradInput')
end
function srcnn.channels(model)
if model.w2nn_channels ~= nil then
return model.w2nn_channels
else
return model:get(model:size() - 1).weight:size(1)
end
end
function srcnn.backend(model)
local conv = model:findModules("cudnn.SpatialConvolution")
local fullconv = model:findModules("cudnn.SpatialFullConvolution")
if #conv > 0 or #fullconv > 0 then
return "cudnn"
else
return "cunn"
end
end
function srcnn.color(model)
local ch = srcnn.channels(model)
if ch == 3 then
return "rgb"
else
return "y"
end
end
function srcnn.name(model)
if model.w2nn_arch_name ~= nil then
return model.w2nn_arch_name
else
local conv = model:findModules("nn.SpatialConvolutionMM")
if #conv == 0 then
conv = model:findModules("cudnn.SpatialConvolution")
end
if #conv == 7 then
return "vgg_7"
elseif #conv == 12 then
return "vgg_12"
else
error("unsupported model")
end
end
end
function srcnn.offset_size(model)
if model.w2nn_offset ~= nil then
return model.w2nn_offset
else
local name = srcnn.name(model)
if name:match("vgg_") then
local conv = model:findModules("nn.SpatialConvolutionMM")
if #conv == 0 then
conv = model:findModules("cudnn.SpatialConvolution")
end
local offset = 0
for i = 1, #conv do
offset = offset + (conv[i].kW - 1) / 2
end
return math.floor(offset)
else
error("unsupported model")
end
end
end
function srcnn.scale_factor(model)
if model.w2nn_scale_factor ~= nil then
return model.w2nn_scale_factor
else
local name = srcnn.name(model)
if name == "upconv_7" then
return 2
elseif name == "upconv_8_4x" then
return 4
else
return 1
end
end
end
local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
if backend == "cunn" then
return nn.SpatialConvolutionMM(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
elseif backend == "cudnn" then
return cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
else
error("unsupported backend:" .. backend)
end
end
srcnn.SpatialConvolution = SpatialConvolution
local function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
if backend == "cunn" then
return nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
elseif backend == "cudnn" then
return cudnn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
else
error("unsupported backend:" .. backend)
end
end
srcnn.SpatialFullConvolution = SpatialFullConvolution
local function ReLU(backend)
if backend == "cunn" then
return nn.ReLU(true)
elseif backend == "cudnn" then
return cudnn.ReLU(true)
else
error("unsupported backend:" .. backend)
end
end
srcnn.ReLU = ReLU
local function Sigmoid(backend)
if backend == "cunn" then
return nn.Sigmoid(true)
elseif backend == "cudnn" then
return cudnn.Sigmoid(true)
else
error("unsupported backend:" .. backend)
end
end
srcnn.ReLU = ReLU
local function SpatialMaxPooling(backend, kW, kH, dW, dH, padW, padH)
if backend == "cunn" then
return nn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
elseif backend == "cudnn" then
return cudnn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
else
error("unsupported backend:" .. backend)
end
end
srcnn.SpatialMaxPooling = SpatialMaxPooling
local function SpatialAveragePooling(backend, kW, kH, dW, dH, padW, padH)
if backend == "cunn" then
return nn.SpatialAveragePooling(kW, kH, dW, dH, padW, padH)
elseif backend == "cudnn" then
return cudnn.SpatialAveragePooling(kW, kH, dW, dH, padW, padH)
else
error("unsupported backend:" .. backend)
end
end
srcnn.SpatialAveragePooling = SpatialAveragePooling
local function SpatialDilatedConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)
if backend == "cunn" then
return nn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)
elseif backend == "cudnn" then
if cudnn.SpatialDilatedConvolution then
-- cudnn v 6
return cudnn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)
else
return nn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)
end
else
error("unsupported backend:" .. backend)
end
end
srcnn.SpatialDilatedConvolution = SpatialDilatedConvolution
local function GlobalAveragePooling(n_output)
local gap = nn.Sequential()
gap:add(nn.Mean(-1, -1)):add(nn.Mean(-1, -1))
gap:add(nn.View(-1, n_output, 1, 1))
return gap
end
srcnn.GlobalAveragePooling = GlobalAveragePooling
-- Squeeze and Excitation Block
local function SEBlock(backend, n_output, r)
local con = nn.ConcatTable(2)
local attention = nn.Sequential()
local n_mid = math.floor(n_output / r)
attention:add(GlobalAveragePooling(n_output))
attention:add(SpatialConvolution(backend, n_output, n_mid, 1, 1, 1, 1, 0, 0))
attention:add(nn.ReLU(true))
attention:add(SpatialConvolution(backend, n_mid, n_output, 1, 1, 1, 1, 0, 0))
attention:add(nn.Sigmoid(true)) -- don't use cudnn sigmoid
con:add(nn.Identity())
con:add(attention)
return con
end
local function SpatialSEBlock(backend, ave_size, n_output, r)
local con = nn.ConcatTable(2)
local attention = nn.Sequential()
local n_mid = math.floor(n_output / r)
attention:add(SpatialAveragePooling(backend, ave_size, ave_size, ave_size, ave_size))
attention:add(SpatialConvolution(backend, n_output, n_mid, 1, 1, 1, 1, 0, 0))
attention:add(nn.ReLU(true))
attention:add(SpatialConvolution(backend, n_mid, n_output, 1, 1, 1, 1, 0, 0))
attention:add(nn.Sigmoid(true))
attention:add(nn.SpatialUpSamplingNearest(ave_size, ave_size))
con:add(nn.Identity())
con:add(attention)
return con
end
local function ResBlock(backend, i, o)
local seq = nn.Sequential()
local con = nn.ConcatTable()
local conv = nn.Sequential()
conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 0, 0))
conv:add(nn.LeakyReLU(0.1, true))
conv:add(SpatialConvolution(backend, o, o, 3, 3, 1, 1, 0, 0))
conv:add(nn.LeakyReLU(0.1, true))
con:add(conv)
if i == o then
con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
else
local seq = nn.Sequential()
seq:add(SpatialConvolution(backend, i, o, 1, 1, 1, 1, 0, 0))
seq:add(nn.SpatialZeroPadding(-2, -2, -2, -2))
con:add(seq)
end
seq:add(con)
seq:add(nn.CAddTable())
return seq
end
local function ResBlockSE(backend, i, o)
local seq = nn.Sequential()
local con = nn.ConcatTable()
local conv = nn.Sequential()
conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 0, 0))
conv:add(nn.LeakyReLU(0.1, true))
conv:add(SpatialConvolution(backend, o, o, 3, 3, 1, 1, 0, 0))
conv:add(nn.LeakyReLU(0.1, true))
conv:add(SEBlock(backend, o, 8))
conv:add(w2nn.ScaleTable())
con:add(conv)
if i == o then
con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
else
local seq = nn.Sequential()
seq:add(SpatialConvolution(backend, i, o, 1, 1, 1, 1, 0, 0))
seq:add(nn.SpatialZeroPadding(-2, -2, -2, -2))
con:add(seq)
end
seq:add(con)
seq:add(nn.CAddTable())
return seq
end
local function ResGroup(backend, n, n_output)
local seq = nn.Sequential()
local res = nn.Sequential()
local con = nn.ConcatTable(2)
local depad = -2 * n
for i = 1, n do
res:add(ResBlock(backend, n_output, n_output))
end
con:add(res)
con:add(nn.SpatialZeroPadding(depad, depad, depad, depad))
seq:add(con)
seq:add(nn.CAddTable())
return seq
end
local function ResGroupSE(backend, n, n_output)
local seq = nn.Sequential()
local res = nn.Sequential()
local con = nn.ConcatTable(2)
local depad = -2 * n
for i = 1, n do
res:add(ResBlockSE(backend, n_output, n_output))
end
con:add(res)
con:add(nn.SpatialZeroPadding(depad, depad, depad, depad))
seq:add(con)
seq:add(nn.CAddTable())
return seq
end
-- VGG style net(7 layers)
function srcnn.vgg_7(backend, ch)
local model = nn.Sequential()
model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
model:add(w2nn.InplaceClip01())
model:add(nn.View(-1):setNumInputDims(3))
model.w2nn_arch_name = "vgg_7"
model.w2nn_offset = 7
model.w2nn_scale_factor = 1
model.w2nn_channels = ch
return model
end
-- Upconvolution
function srcnn.upconv_7(backend, ch)
local model = nn.Sequential()
model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
model:add(w2nn.InplaceClip01())
model:add(nn.View(-1):setNumInputDims(3))
model.w2nn_arch_name = "upconv_7"
model.w2nn_offset = 14
model.w2nn_scale_factor = 2
model.w2nn_resize = true
model.w2nn_channels = ch
return model
end
-- large version of upconv_7
-- This model able to beat upconv_7 (PSNR: +0.3 ~ +0.8) but this model is 2x slower than upconv_7.
function srcnn.upconv_7l(backend, ch)
local model = nn.Sequential()
model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 128, 192, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 192, 256, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 256, 512, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialFullConvolution(backend, 512, ch, 4, 4, 2, 2, 3, 3):noBias())
model:add(w2nn.InplaceClip01())
model:add(nn.View(-1):setNumInputDims(3))
model.w2nn_arch_name = "upconv_7l"
model.w2nn_offset = 14
model.w2nn_scale_factor = 2
model.w2nn_resize = true
model.w2nn_channels = ch
return model
end
function srcnn.resnet_14l(backend, ch)
local model = nn.Sequential()
model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(ResBlock(backend, 32, 64))
model:add(ResBlock(backend, 64, 64))
model:add(ResBlock(backend, 64, 128))
model:add(ResBlock(backend, 128, 128))
model:add(ResBlock(backend, 128, 256))
model:add(ResBlock(backend, 256, 256))
model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
model:add(w2nn.InplaceClip01())
model:add(nn.View(-1):setNumInputDims(3))
model.w2nn_arch_name = "resnet_14l"
model.w2nn_offset = 28
model.w2nn_scale_factor = 2
model.w2nn_resize = true
model.w2nn_channels = ch
return model
end
-- ResNet with SEBlock for fast conversion
function srcnn.upresnet_s(backend, ch)
local model = nn.Sequential()
model:add(SpatialConvolution(backend, ch, 64, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(ResGroupSE(backend, 3, 64))
model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3):noBias())
model:add(w2nn.InplaceClip01())
model.w2nn_arch_name = "upresnet_s"
model.w2nn_offset = 18
model.w2nn_scale_factor = 2
model.w2nn_resize = true
model.w2nn_channels = ch
return model
end
-- for segmentation
function srcnn.fcn_v1(backend, ch)
-- input_size = 120
local model = nn.Sequential()
--i = 120
--model:cuda()
--print(model:forward(torch.Tensor(32, ch, i, i):uniform():cuda()):size())
model:add(SpatialConvolution(backend, ch, 32, 5, 5, 2, 2, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
model:add(SpatialConvolution(backend, 128, 256, 1, 1, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(nn.Dropout(0.5, false, true))
model:add(SpatialFullConvolution(backend, 256, 128, 2, 2, 2, 2, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialFullConvolution(backend, 128, 128, 2, 2, 2, 2, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 128, 64, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialFullConvolution(backend, 64, 64, 2, 2, 2, 2, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, 64, 32, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialFullConvolution(backend, 32, ch, 4, 4, 2, 2, 3, 3))
model:add(w2nn.InplaceClip01())
model:add(nn.View(-1):setNumInputDims(3))
model.w2nn_arch_name = "fcn_v1"
model.w2nn_offset = 36
model.w2nn_scale_factor = 1
model.w2nn_channels = ch
model.w2nn_input_size = 120
--model.w2nn_gcn = true
return model
end
-- Cascaded Residual U-Net with SEBlock
-- unet utils adapted from https://gist.github.com/toshi-k/ca75e614f1ac12fa44f62014ac1d6465
local function unet_conv(backend, n_input, n_middle, n_output, se)
local model = nn.Sequential()
model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1, true))
if se then
model:add(SEBlock(backend, n_output, 8))
model:add(w2nn.ScaleTable())
end
return model
end
local function unet_branch(backend, insert, backend, n_input, n_output, depad)
local block = nn.Sequential()
local con = nn.ConcatTable(2)
local model = nn.Sequential()
block:add(SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0))-- downsampling
block:add(nn.LeakyReLU(0.1, true))
block:add(insert)
block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
block:add(nn.LeakyReLU(0.1, true))
con:add(block)
con:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
model:add(con)
model:add(nn.CAddTable())
return model
end
local function cunet_unet1(backend, ch, deconv)
local block1 = unet_conv(backend, 64, 128, 64, true)
local model = nn.Sequential()
model:add(unet_conv(backend, ch, 32, 64, false))
model:add(unet_branch(backend, block1, backend, 64, 64, 4))
model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1))
if deconv then
model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
else
model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
end
return model
end
local function cunet_unet2(backend, ch, deconv)
local block1 = unet_conv(backend, 128, 256, 128, true)
local block2 = nn.Sequential()
block2:add(unet_conv(backend, 64, 64, 128, true))
block2:add(unet_branch(backend, block1, backend, 128, 128, 4))
block2:add(unet_conv(backend, 128, 64, 64, true))
local model = nn.Sequential()
model:add(unet_conv(backend, ch, 32, 64, false))
model:add(unet_branch(backend, block2, backend, 64, 64, 16))
model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
model:add(nn.LeakyReLU(0.1))
if deconv then
model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))
else
model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
end
return model
end
-- 2x
function srcnn.upcunet(backend, ch)
local model = nn.Sequential()
local con = nn.ConcatTable()
local aux_con = nn.ConcatTable()
-- 2 cascade
model:add(cunet_unet1(backend, ch, true))
con:add(cunet_unet2(backend, ch, false))
con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
model:add(con)
model:add(aux_con)
model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
model.w2nn_arch_name = "upcunet"
model.w2nn_offset = 36
model.w2nn_scale_factor = 2
model.w2nn_channels = ch
model.w2nn_resize = true
model.w2nn_valid_input_size = {}
for i = 76, 512, 4 do
table.insert(model.w2nn_valid_input_size, i)
end
return model
end
-- 1x
function srcnn.cunet(backend, ch)
local model = nn.Sequential()
local con = nn.ConcatTable()
local aux_con = nn.ConcatTable()
-- 2 cascade
model:add(cunet_unet1(backend, ch, false))
con:add(cunet_unet2(backend, ch, false))
con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
model:add(con)
model:add(aux_con)
model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
model.w2nn_arch_name = "cunet"
model.w2nn_offset = 28
model.w2nn_scale_factor = 1
model.w2nn_channels = ch
model.w2nn_resize = false
model.w2nn_valid_input_size = {}
for i = 100, 512, 4 do
table.insert(model.w2nn_valid_input_size, i)
end
return model
end
local function bench()
local sys = require 'sys'
cudnn.benchmark = true
local model = nil
local arch = {"upconv_7", "upcunet", "vgg_7", "cunet"}
local backend = "cudnn"
local ch = 3
local batch_size = 1
local output_size = 256
for k = 1, #arch do
model = srcnn[arch[k]](backend, ch):cuda()
model:evaluate()
local dummy = nil
local crop_size = nil
if model.w2nn_resize then
crop_size = (output_size + model.w2nn_offset * 2) / 2
else
crop_size = (output_size + model.w2nn_offset * 2)
end
local dummy = torch.Tensor(batch_size, ch, output_size, output_size):zero():cuda()
print(arch[k], output_size, crop_size)
-- warn
for i = 1, 4 do
local x = torch.Tensor(batch_size, ch, crop_size, crop_size):uniform():cuda()
model:forward(x)
end
t = sys.clock()
for i = 1, 10 do
local x = torch.Tensor(batch_size, ch, crop_size, crop_size):uniform():cuda()
local z = model:forward(x)
dummy:add(z)
end
print(arch[k], sys.clock() - t)
model:clearState()
end
end
function srcnn.create(model_name, backend, color)
model_name = model_name or "vgg_7"
backend = backend or "cunn"
color = color or "rgb"
local ch = 3
if color == "rgb" then
ch = 3
elseif color == "y" then
ch = 1
else
error("unsupported color: " .. color)
end
if srcnn[model_name] then
local model = srcnn[model_name](backend, ch)
assert(model.w2nn_offset % model.w2nn_scale_factor == 0)
return model
else
error("unsupported model_name: " .. model_name)
end
end
--[[
local model = srcnn.resnet_s("cunn", 3):cuda()
print(model)
model:training()
print(model:forward(torch.Tensor(1, 3, 128, 128):zero():cuda()):size())
bench()
os.exit()
--]]
return srcnn