forked from coqui-ai/TTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_speaker_encoder.py
147 lines (129 loc) · 5.85 KB
/
test_speaker_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import unittest
import torch as T
from tests import get_tests_input_path
from TTS.encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss
from TTS.encoder.models.lstm import LSTMSpeakerEncoder
from TTS.encoder.models.resnet import ResNetSpeakerEncoder
file_path = get_tests_input_path()
class LSTMSpeakerEncoderTests(unittest.TestCase):
# pylint: disable=R0201
def test_in_out(self):
dummy_input = T.rand(4, 80, 20) # B x D x T
dummy_hidden = [T.rand(2, 4, 128), T.rand(2, 4, 128)]
model = LSTMSpeakerEncoder(input_dim=80, proj_dim=256, lstm_dim=768, num_lstm_layers=3)
# computing d vectors
output = model.forward(dummy_input)
assert output.shape[0] == 4
assert output.shape[1] == 256
output = model.inference(dummy_input)
assert output.shape[0] == 4
assert output.shape[1] == 256
# compute d vectors by passing LSTM hidden
# output = model.forward(dummy_input, dummy_hidden)
# assert output.shape[0] == 4
# assert output.shape[1] == 20
# assert output.shape[2] == 256
# check normalization
output_norm = T.nn.functional.normalize(output, dim=1, p=2)
assert_diff = (output_norm - output).sum().item()
assert output.type() == "torch.FloatTensor"
assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}"
# compute d for a given batch
dummy_input = T.rand(1, 80, 240) # B x T x D
output = model.compute_embedding(dummy_input, num_frames=160, num_eval=5)
assert output.shape[0] == 1
assert output.shape[1] == 256
assert len(output.shape) == 2
class ResNetSpeakerEncoderTests(unittest.TestCase):
# pylint: disable=R0201
def test_in_out(self):
dummy_input = T.rand(4, 80, 20) # B x D x T
dummy_hidden = [T.rand(2, 4, 128), T.rand(2, 4, 128)]
model = ResNetSpeakerEncoder(input_dim=80, proj_dim=256)
# computing d vectors
output = model.forward(dummy_input)
assert output.shape[0] == 4
assert output.shape[1] == 256
output = model.forward(dummy_input, l2_norm=True)
assert output.shape[0] == 4
assert output.shape[1] == 256
# check normalization
output_norm = T.nn.functional.normalize(output, dim=1, p=2)
assert_diff = (output_norm - output).sum().item()
assert output.type() == "torch.FloatTensor"
assert abs(assert_diff) < 1e-4, f" [!] output_norm has wrong values - {assert_diff}"
# compute d for a given batch
dummy_input = T.rand(1, 80, 240) # B x D x T
output = model.compute_embedding(dummy_input, num_frames=160, num_eval=10)
assert output.shape[0] == 1
assert output.shape[1] == 256
assert len(output.shape) == 2
class GE2ELossTests(unittest.TestCase):
# pylint: disable=R0201
def test_in_out(self):
# check random input
dummy_input = T.rand(4, 5, 64) # num_speaker x num_utterance x dim
loss = GE2ELoss(loss_method="softmax")
output = loss.forward(dummy_input)
assert output.item() >= 0.0
# check all zeros
dummy_input = T.ones(4, 5, 64) # num_speaker x num_utterance x dim
loss = GE2ELoss(loss_method="softmax")
output = loss.forward(dummy_input)
assert output.item() >= 0.0
# check speaker loss with orthogonal d-vectors
dummy_input = T.empty(3, 64)
dummy_input = T.nn.init.orthogonal_(dummy_input)
dummy_input = T.cat(
[
dummy_input[0].repeat(5, 1, 1).transpose(0, 1),
dummy_input[1].repeat(5, 1, 1).transpose(0, 1),
dummy_input[2].repeat(5, 1, 1).transpose(0, 1),
]
) # num_speaker x num_utterance x dim
loss = GE2ELoss(loss_method="softmax")
output = loss.forward(dummy_input)
assert output.item() < 0.005
class AngleProtoLossTests(unittest.TestCase):
# pylint: disable=R0201
def test_in_out(self):
# check random input
dummy_input = T.rand(4, 5, 64) # num_speaker x num_utterance x dim
loss = AngleProtoLoss()
output = loss.forward(dummy_input)
assert output.item() >= 0.0
# check all zeros
dummy_input = T.ones(4, 5, 64) # num_speaker x num_utterance x dim
loss = AngleProtoLoss()
output = loss.forward(dummy_input)
assert output.item() >= 0.0
# check speaker loss with orthogonal d-vectors
dummy_input = T.empty(3, 64)
dummy_input = T.nn.init.orthogonal_(dummy_input)
dummy_input = T.cat(
[
dummy_input[0].repeat(5, 1, 1).transpose(0, 1),
dummy_input[1].repeat(5, 1, 1).transpose(0, 1),
dummy_input[2].repeat(5, 1, 1).transpose(0, 1),
]
) # num_speaker x num_utterance x dim
loss = AngleProtoLoss()
output = loss.forward(dummy_input)
assert output.item() < 0.005
class SoftmaxAngleProtoLossTests(unittest.TestCase):
# pylint: disable=R0201
def test_in_out(self):
embedding_dim = 64
num_speakers = 5
batch_size = 4
dummy_label = T.randint(low=0, high=num_speakers, size=(batch_size, num_speakers))
# check random input
dummy_input = T.rand(batch_size, num_speakers, embedding_dim) # num_speaker x num_utterance x dim
loss = SoftmaxAngleProtoLoss(embedding_dim=embedding_dim, n_speakers=num_speakers)
output = loss.forward(dummy_input, dummy_label)
assert output.item() >= 0.0
# check all zeros
dummy_input = T.ones(batch_size, num_speakers, embedding_dim) # num_speaker x num_utterance x dim
loss = SoftmaxAngleProtoLoss(embedding_dim=embedding_dim, n_speakers=num_speakers)
output = loss.forward(dummy_input, dummy_label)
assert output.item() >= 0.0