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2.1 The algorithm

Let f : Rd
! R be convex and differentiable. We also assume that f has a

global minimum x
?, and the goal is to find (an approximation of) it. This

usually means that for a given " > 0, we want to find x 2 Rd such that

f(x)� f(x?) < ".

In this, we are not making an attempt to get near to x
? itself — note that

there can be several minima x
?
1 6= x

?
2 with f(x?

1) = f(x?
2).

Gradient descent is a very simple iterative algorithm for finding the
desired approximation x, under suitable conditions that we will get to.
Gradient descent computes a sequence x0,x1, . . . of vectors such that x0 is
arbitrary, and

xt+1 := xt � �rf(xt), t � 0. (2.1)

Here, � is a fixed stepsize, but it may also make sense to have � depend
on t. For now, � is fixed. As the vector �rf(xt) points into a direction of
descent of f at xt, the idea is to move a little bit into this direction and then
iterate. We hope that after not too many iterations t, f(xt)� f(x?) < "; see
Figure 2.1 for an example.

The choice of � is critical for the performance. If � is too small, the
process might take too long, and if � is too large, we are in danger of
overshooting. It is not clear at this point whether there is a “right” stepsize.

2.2 Vanilla analysis
Let xt be some iterate in the sequence (2.1). We do have an inequality that
bounds f(xt)�f(x?), namely the one saying that the graph of f lies above
all its tangent hyperplanes; indeed, applying (1.2) with x = xt,y = x

? and
reshuffling terms, we obtain

f(xt)� f(x?)  rf(xt)
>(xt � x

?). (2.2)

By definition of gradient descent (2.1), rf(xt) = (xt � xt+1)/�, hence

f(xt)� f(x?) 
1

�
(xt � xt+1)

>(xt � x
?). (2.3)
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Figure 2.1: Example run of gradient descent on the quadratic function
f(x1, x2) = 2(x1 � 4)2 + 3(x2 � 3)2 with global minimum (4, 3); we have
chosen x0 = (0, 0), � = 0.1; dashed lines represent level sets of f (points of
constant f -value)

Now we apply (somewhat out of the blue, but this will clear up in the next
step) the basic vector equation 2v>

w = kvk
2 + kwk

2
� kv �wk

2 to obtain

f(xt)� f(x?) 
1

2�

�
kxt � xt+1k

2 + kxt � x
?
k
2
� kxt+1 � x

?
k
2
�

=
1

2�

�
�2
krf(xt)k

2 + kxt � x
?
k
2
� kxt+1 � x

?
k
2
�

(2.4)

again by using the definition (2.1) of gradient descent. Next we sum this
up over some initial values of t, so that the latter two terms in the bracket
cancel in a telescoping sum.

T�1X

t=0

(f(xt)� f(x?)) 
�

2

T�1X

t=0

krf(xt)k
2 +

1

2�

�
kx0 � x

?
k
2
� kxT � x

?
k
2
�


�

2

T�1X

t=0

krf(xt)k
2 +

1

2�
kx0 � x

?
k
2 (2.5)
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This gives us an upper bound for the average error f(xt) � f(x?), t =
0, . . . , T � 1, hence in particular for the error incurred by the iterate with
the smallest function value. The last iterate is not necessarily the best one:
gradient descent with fixed stepsize � will in general also make steps that
overshoot and actually increase the function value; see Exercise 11(i).

The question is of course: is this bound any good? In general, the
answer is no. A dependence on kx0 � x

?
k is to be expected (the further

we start from x
?, the longer we will take); the dependence on the squared

gradients is more of an issue, and if we cannot control them, we cannot
say much.

2.3 Bounded gradients: O(1/"2) steps
Here is the cheapest “solution” to squeeze something out of the vanilla
analysis: let us simply assume that all gradients of f are bounded in norm.
This rules out many interesting functions, though, since functions with
bounded gradients only have at most linear growth. Equivalently, such
functions are Lipschitz continuous over Rd. But for example, f(x) = x2 (a
supermodel in the world of convex functions) already doesn’t qualify, as
rf(x) = 2x—and this is unbounded as x tends to infinity. But let’s care
about supermodels later.

Theorem 2.1. Let f : Rd
! R be convex and differentiable with a global mini-

mum x
?; furthermore, suppose that kx0 � x

?
k  R and krf(x)k  L for all x.

Choosing the stepsize

� :=
R

L
p
T
,

gradient descent (2.1) yields

1

T

T�1X

t=0

f(xt)� f(x?) 
RL
p
T
.

Proof. This is a simple calculation on top of (2.5): after plugging in the
bounds R and L, we want to choose � such that

q(�) =
L2T�

2
+

R2

2�
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is minimized. Setting the derivative to zero yields the above value of �,
and q(R/(L

p
T )) = RL

p
T . Dividing by T , the result follows.

This means that in order to achieve minT�1
t=0 (f(xt)�f(x?))  ", we need

O(1/"2) many iterations, considering R and L as constants. This is not par-
ticularly good when it comes to concrete numbers (think of desired error
" = 10�6 when R,L are somewhat larger). On the other hand, the number
of steps does not depend on d, the dimension of the space. This is very
important since we often optimize in high-dimensional spaces. Of course,
R and L may depend on d, but in many relevant cases, this dependence is
mild.

What happens if we don’t know R and/or L? An idea is to “guess” R
and L, run gradient descent with T and � resulting from the guess, check
whether the result has absolute error at most ", and repeat with a differ-
ent guess otherwise. This fails, however, since in order to compute the
absolute error, we need to know f(x?) which we typically don’t. But Exer-
cise 12 asks you to show that knowing R is sufficient.

We conclude this section by remarking that bounded gradients are ac-
tually equivalent to Lipschitz continuity of f .

Lemma 2.2 (Exercise 13). Let f : Rd
! R be differentiable, L 2 R+. Then the

following two statements are equivalent.

(i) krf(x)k  L for all x 2 Rd.

(ii) |f(x)� f(y)|  Lkx� yk for all x,y 2 Rd.

2.4 Smoothness: O(1/") steps
Our workhorse in the vanilla analysis was the first-order characterization
of convexity: for all x,y 2 Rd, we have

f(y) � f(x) +rf(x)>(y � x) (2.6)

Next we want to require that f is not “too convex”, intuitively meaning
that the curvature of the bowl is bounded.

Definition 2.3. Let f : Rd
! R be convex and differentiable, L 2 R+. f is

called smooth (with parameter L) if

f(y)  f(x) +rf(x)>(y � x) +
L

2
kx� yk

2, 8x,y 2 Rd. (2.7)
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Recall that (2.6) says that for any x, the graph of f is above its tangential
hyperplane at (x, f(x)). In contrast, (2.7) says that for any x, the graph of f
is below a not-too-steep tangential paraboloid at (x, f(x)); see Figure 2.2.

x y

f(y)

f(x) +rf(x)>(y � x)

f(x) +rf(x)>(y � x) + L
2 kx� yk2

Figure 2.2: A smooth convex function

Let us discuss some cases. If L = 0, (2.6) and (2.7) together require that

f(y) = f(x) +rf(x)>(y � x), 8x,y 2 Rd,

meaning that f is an affine function. A simple calculation shows that our
supermodel function f(x) = x2 is smooth with parameter L = 2, and the
same holds for its d-dimensional generalization f(x) = kxk

2 (Exercise 10).
The (univariate) convex function f(x) = x4 is not smooth: at x = 0, condi-
tion (2.7) reads as

y4 
L

2
y2,

and there is obviously no L that works for all y. In general—and this
is the important message here—only functions of asymptotically at most
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quadratic growth can be smooth. It is tempting to believe that any such
“subquadratic” function is actually smooth, but this is not true. Exer-
cise 11(iii) provides a counterexample.

The operations that we have shown to preserve convexity in Lemma 1.9
also preserve smoothness. This immediately gives us a rich collection of
smooth functions.

Lemma 2.4 (Exercise 14).

(i) Let f1, f2, . . . , fm be convex functions that are smooth with parameters
L1, L2, . . . , Lm, and let �1,�2, . . . ,�m 2 R+. Then the convex function
f :=

Pm
i=1 �ifi is smooth with parameter

Pm
i=1 �iLi.

(ii) Let f be a convex function with dom(f) ✓ Rd that is smooth with pa-
rameter L, and let g : Rm

! Rd be an affine function, meaning that
g(x) = Ax + b, for some matrix A 2 Rd⇥m and some vector b 2 Rd.
Then the convex function f � g (that maps x to f(Ax+ b)) is smooth with
parameter LkAk2, where

kAk = max
kxk=1

kAxk

kxk

is the 2-norm (or spectral norm) of A.

Corollary 2.5. Let f(x) = kAx � bk
2 be a least squares objective. Then f is

smooth with parameter L = 2kAk2.

We next show that for smooth functions, the vanilla analysis provides
a better bound than it does under bounded gradients. In particular, we are
able to serve the supermodel f(x) = x2 now.

Theorem 2.6. Let f : Rd
! R be convex and differentiable with a global min-

imum x
?; furthermore, suppose that f is smooth with parameter L according

to (2.7). Choosing

� :=
1

L
,

gradient descent (2.1) with arbitrary x0 satisfies the following two properties.

(i) Function values are monotone decreasing:

f(xt+1)  f(xt)�
1

2L
krf(xt)k

2, t � 0.

30



(ii)
f(xT )� f(x?) 

L

2T
kx0 � x

?
k
2, T > 0.

Proof. For (i), we directly apply the smoothness condition (2.7) and the
definition of gradient descent that yields xt+1�xt = �rf(xt)/L. We com-
pute

f(xt+1)  f(xt) +rf(xt)
>(xt+1 � xt) +

L

2
kxt � xt+1k

2

= f(xt)�
1

L
krf(xt)k

2 +
1

2L
krf(xt)k

2

= f(xt)�
1

2L
krf(xt)k

2.

In particular, this lets us now bound the sum of squared gradients after
step (2.5) of the vanilla analysis:

1

2L

T�1X

t=0

krf(xt)k
2


T�1X

t=0

(f(xt)� f(xt+1)) = f(x0)� f(xT ). (2.8)

With � = 1/L, (2.5) then yields

T�1X

t=0

(f(xt)� f(x?)) 
1

2L

T�1X

t=0

krf(xt)k
2 +

L

2
kx0 � x

?
k
2

 f(x0)� f(xT ) +
L

2
kx0 � x

?
k
2,

equivalently
TX

t=1

(f(xt)� f(x?)) 
L

2
kx0 � x

?
k
2. (2.9)

Hence, by (i),

f(xT )� f(x?) 
1

T

TX

t=1

(f(xt)� f(x?)) 
L

2T
kx0 � x

?
k
2.
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This improves over the bounds of Theorem 2.1. Again assuming that L
and kx0 � x

?
k
2 are constant, we now only need O(1/") iterations instead

of O(1/"2) to achieve f(xt)� f(x?)  ". Exercise 15 shows that we do not
need to know L to obtain the same asymptotic runtime.

While bounded gradients are equivalent to Lipschitz continuity of f ,
smoothness turns out to be equivalent to Lipschitz continuity of rf .

Lemma 2.7. Let f : Rd
! R be convex and differentiable. The following two

statements are equivalent.

(i) f is smooth with parameter L.

(ii) krf(x)�rf(y)k  Lkx� yk for all x,y 2 Rd.

A proof can for example be found in the lecture slides of L. Vanden-
berghe, http://www.seas.ucla.edu/˜vandenbe/236C/lectures/
gradient.pdf.

2.5 Interlude
Let us get back to the supermodel f(x) = x2 (that is smooth with param-
eter L = 2, as we observed before). According to Theorem 2.6, gradient
descent (2.1) with stepsize � = 1/2 satisfies

f(xt) 
1

t
x2
0. (2.10)

Here we used that the minimizer is x? = 0. Let us check how good this
bound really is. For our concrete function and concrete stepsize, (2.1) reads
as

xt+1 = xt �
1

2
rf(xt) = xt � xt = 0,

so we are always done after one step! But we will see in the next section
that this is only because the function is particularly beautiful, and on top of
that, we have picked the best possible smoothness parameter. To simulate
a more realistic situation here, let us assume that we haven’t looked at the
supermodel too closely and found it to be smooth with parameter L = 4
only (which is a suboptimal but still valid parameter). In this case, � = 1/4
and (2.1) becomes

xt+1 = xt �
1

4
rf(xt) = xt �

xt

2
=

xt

2
.
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So, we in fact have
f(xt) = f

⇣x0

2t

⌘
=

1

22t
x2
0. (2.11)

This is still vastly better than the bound of (2.10)! While (2.10) requires
t ⇡ x2

0/" to achieve f(xt)  ", (2.11) only requires

t ⇡
1

2
log

✓
x2
0

"

◆
,

which is an exponential improvement in the number of steps.

2.6 Strong convexity: O(log(1/")) steps
The supermodel function f(x) = x2 is not only smooth (“not too curved”)
but also strongly convex (“not too flat”). It will turn out that this is the
crucial ingredient that makes gradient descent fast.

Definition 2.8. Let f : Rd
! R be convex and differentiable, µ 2 R+, µ > 0. f

is called strongly convex (with parameter µ) if

f(y) � f(x) +rf(x)>(y � x) +
µ

2
kx� yk

2, 8x,y 2 Rd. (2.12)

While smoothness according to (2.7) says that for any x, the graph of f
is below a not-too-steep tangential paraboloid at (x, f(x)), strong convexity
means that the graph of f is above a not-too-flat tangential paraboloid at
(x, f(x)). The graph of a smooth and strongly convex function is therefore
at every point wedged between two paraboloids; see Figure 2.3.

We can also interpret (2.12) as a strengthening of the first-order charac-
terization of convexity. In the form of (2.6) this reads as

f(y) � f(x) +rf(x)>(y � x), 8x,y 2 Rd,

and therefore says that every convex function satisfies (2.12) with µ = 0.

Lemma 2.9 (Exercise 17). If f is strongly convex with parameter µ > 0, then f
is strictly convex and has a unique global minimum.

The supermodel f(x) = x2 is particularly beautiful since it is both
smooth and strongly convex with the same parameter L = µ = 2 (go-
ing through the calculations in Exercise 10 again will reveal this). We can
easily characterize the class of particularly beautiful functions. These are
exactly the ones whose sublevel sets are `2-balls.
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x y

f(y)

f(x) +rf(x)>(y � x) + µ
2kx� yk2

f(x) +rf(x)>(y � x) + L
2 kx� yk2

Figure 2.3: A smooth and strongly convex function

Lemma 2.10 (Exercise 18). Let f : Rd
! R be strongly convex with parameter

µ > 0 and smooth with parameter µ. Prove that f is of the form

f(x) =
µ

2
kx� bk

2 + c,

where b 2 Rd, c 2 R.

Once we have a unique global minimum x
?, we can attempt to prove

that limt!1 xt = x
? in gradient descent. From the vanilla analysis, we

already have an inequality that potentially allows us to get started on this,
namely (2.4) that we derived from the first-order characterization:

f(xt)� f(x?) 
1

2�

�
�2
krf(xt)k

2 + kxt � x
?
k
2
� kxt+1 � x

?
k
2
�
.

If f is strongly convex, we can start from the strengthening (2.12) instead
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to obtain

f(xt)�f(x?) 
1

2�

�
�2
krf(xt)k

2 + kxt � x
?
k
2
� kxt+1 � x

?
k
2
�
�
µ

2
kxt�x

?
k
2.

(2.13)
Rewriting this yields a bound on kxt+1 �x

?
k
2 in terms of kxt �x

?
k
2, along

with some “noise” that we still need to take care of:

kxt+1�x
?
k
2
 2�(f(x?)�f(xt))+�2

krf(xt)k
2+(1�µ�)kxt�x

?
k
2. (2.14)

Theorem 2.11. Let f : Rd
! R be convex and differentiable with a global

minimum x
?; furthermore, suppose that f is smooth with parameter L according

to (2.7) and strongly convex with parameter µ > 0 according to (2.12). Choosing

� :=
1

L
,

gradient descent (2.1) with arbitrary x0 satisfies the following two properties.

(i) Squared distances to x
? are geometrically decreasing:

kxt+1 � x
?
k
2


⇣
1�

µ

L

⌘
kxt � x

?
k
2, t � 0.

(ii)
f(xt)� f(x?) 

L

2

⇣
1�

µ

L

⌘t
kx0 � x

?
k
2.

Proof. For (i), we show that the noise in (2.14) disappears. From Theo-
rem 2.6 (i), we know that

f(x?)� f(xt)  f(xt+1)� f(xt)  �
1

2L
krf(xt)k

2,

and hence the noise can be bounded as follows, using � = 1/L:

2�(f(x?)� f(xt)) + �2
krf(xt)k

2 =
2

L
(f(x?)� f(xt)) +

1

L2
krf(xt)k

2

 �
1

L2
krf(xt)k

2 +
1

L2
krf(xt)k

2 = 0.

Hence, (2.14) actually yields

kxt+1 � x
?
k
2
 (1� µ�)kxt � x

?
k
2 =

⇣
1�

µ

L

⌘
kxt � x

?
k
2.
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The bound in (ii) follows from smoothness (2.7), using rf(x?) = 0 (Lemma 1.13):

f(xt)� f(x?)  rf(x?)>(xt � x
?) +

L

2
kx

?
� xtk

2 =
L

2
kx

?
� xtk

2.

This implies that in order to reach absolute error at most ", we only
need O(log 1

") iterations, where the constant behind the big-O is roughly
L/µ.

2.7 Exercises
Exercise 10. Prove that f(x) = kxk

2 is smooth with parameter L = 2.

Exercise 11. Consider the function f(x) = |x|3/2 for x 2 R.

(i) Prove that f is strictly convex and differentiable, with a unique global min-
imum x? = 0.

(ii) Prove that for every fixed stepsize � in gradient descent (2.1) applied to f ,
there exists x0 for which f(x1) > f(x0).

(iii) Prove that f is not smooth.

(iv) Let X ✓ R be a compact convex set (an interval) such that 0 2 X . Prove
that f is not smooth over X .

Exercise 12. In order to obtain average error at most " in Theorem 2.1, we need
to choose iteration number and step size as

T �

✓
RL

"

◆2

, � :=
R

L
p
T
.

If R or L are unknown, we cannot do this.
But suppose that we know R. Develop an algorithm that—not knowing L—

finds a vector x such that f(x)� f(x?) < ", using at most

O

 ✓
RL

"

◆2
!

many gradient descent steps!
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Exercise 13. Prove Lemma 2.2! (Lipschitz continuity and bounded gradients)

Exercise 14. Prove Lemma 2.4! (Operations which preserve smoothness)

Exercise 15. In order to obtain average error at most " in Theorem 2.6, we need
to choose

� :=
1

L
, T �

R2L

2"
,

if kx0 � x
?
k  R. If L is unknown, we cannot do this.

But suppose that we know R. Develop an algorithm that—not knowing L—
finds a vector x such that f(x)� f(x?) < ", using at most

O

✓
R2L

2"

◆

many gradient descent steps!

Exercise 16. Let X = [�a, a] ✓ R. Prove that f(x) = x4 is smooth over X and
determine a concrete smoothness parameter L.

Exercise 17. Prove Lemma 2.9!

Exercise 18. Prove Lemma 2.10!
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