
Chapter 7

Quasi-Newton Methods

Contents
7.1 The secant method . 77
7.2 The secant condition . 79
7.3 Quasi-Newton methods . 79
7.4 Greenstadt’s approach (Optional Material) 80

7.4.1 The method of Lagrange multipliers 82
7.4.2 The Greenstadt family 84
7.4.3 The BFGS method . 86
7.4.4 The L-BFGS method 88

7.5 Exercises . 91

76

The main computational bottleneck in Newton’s method (6.6) is the
computation and inversion of the Hessian matrix in each step. This matrix
has size d ⇥ d, so it will take up to O(d3) time to invert it (or to solve the
system r

2f(xt)�x = �rf(xt) that gives us the next Newton step �x).
Already in the 1950s, attempts were made to circumvent this constly step,
the first one going back to Davidon [Dav59]. To motivate them, let us go
back to the 1-dimensional case.

7.1 The secant method
Like Newton’s method (6.1), the secant method is an iterative method for
finding a zero of a univariate function. Unlike Newton’s method, it does
not use derivatives and hence does not require the function under con-
sideration to be differentiable. In fact, it is (therefore) much older than
Newton’s method. Reversing history and starting from the Newton step

xt+1 := xt �
f(xt)

f 0(xt)
, t � 0,

we can derive the secant method by replacing the derivative f 0(xt) with its
finite difference approximation

f(xt)� f(xt�1)

xt � xt�1
.

As we (in the differentiable case) have

f 0(xt) = lim
x!xt

f(xt)� f(x)

xt � x
,

we get
f(xt)� f(xt�1)

xt � xt�1
⇡ f 0(xt)

for |xt � xt�1| small. As the method proceeds, we expect consecutive iter-
ates xt�1, xt to become closer and closer, so that the secant step

xt+1 := xt � f(xt)
xt � xt�1

f(xt)� f(xt�1)
, t � 1 (7.1)

77

approximates the Newton step (two starting values x0, x1 need to be cho-
sen here). Figure 7.1 shows what the method does: it constructs the line
through the two points (xt�1, f(xt�1)) and (xt, f(xt)) on the graph of f ; the
next iterate xt+1 is where this line intersects the x-axis. Exercise 34 asks
you to formally prove this.

xt xt+1

f(x)

xt�1

Figure 7.1: One step of the secant method

Convergence of the secant method can be analyzed, but we don’t do
this here. The main point for us is that we now have a derivative-free ver-
sion of Newton’s method.

When the task is to optimize a differentiable univariate function, we
can apply the secant method to its derivative to obtain the secant method
for optimization:

xt+1 := xt � f 0(xt)
xt � xt�1

f 0(xt)� f 0(xt�1)
, t � 1. (7.2)

This is a second-derivative-free version of Newton’s method (6.5) for opti-
mization. The plan is now to generalize this to higher dimensions to obtain
a Hessian-free version of Newton’s method (6.6) for optimization over Rd.

78

7.2 The secant condition
Applying finite difference approximation to the second derivative of f
(we’re still in the 1-dimensional case), we get

Ht :=
f 0(xt)� f 0(xt�1)

xt � xt�1
⇡ f 00(xt),

which we can write as

f 0(xt)� f 0(xt�1) = Ht(xt � xt�1) ⇡ f 00(xt)(xt � xt�1). (7.3)

Now, while Newton’s method for optimization uses the update step

xt+1 = xt � f 00(xt)
�1f 0(xt), t � 0,

the secant method works with the approximation Ht ⇡ f 00(xt):

xt+1 = xt �H�1
t f 0(xt), t � 1. (7.4)

The fact that Ht approximates f 00(xt) in the twice differentiable case
was our motivation for the secant method, but in the method itself, there
is no reference to f 00 (which is exactly the point). All that is needed is the
secant condition from (7.3) that defines Ht:

f 0(xt)� f 0(xt�1) = Ht(xt � xt�1). (7.5)

This view can be generalized to higher dimensions. If f : Rd
! R is

differentiable, (7.4) becomes

xt+1 = xt �H�1
t rf(xt), t � 1, (7.6)

where Ht 2 R
d⇥d is now supposed to be a symmetric matrix satisfying the

d-dimensional secant condition

rf(xt)�rf(xt�1) = Ht(xt � xt�1). (7.7)

7.3 Quasi-Newton methods
If f is twice differentiable, the secant condition (7.7) along with the first-
order Taylor approximation of rf(x) yields the d-dimensional analog of
(7.3):

rf(xt)�rf(xt�1) = Ht(xt � xt�1) ⇡ r
2f(xt)(xt � xt�1),

79

This tells us that (7.6) is meant to approximates Newton’s method. There-
fore, whenever we use (7.6) with a symmetric matrix satisfying the secant
condition (7.7), we say that we have a Quasi-Newton method.

In the 1-dimensional case, there is only one Quasi-Newton method—
the secant method (7.1). Indeed, equation (7.5) uniquely defines the num-
ber Ht in each step.

But in the d-dimensional case, the matrix Ht in the secant condition is
underdetermined, starting from d = 2: Taking the symmetry requirement
into account, (7.7) is a system of d equations in (d + 1)/2 unknowns, so if
it is satisfiable at all, there are many solutions Ht. This raises the question
of which one to choose, and how to do so efficiently; after all, we want to
get some savings over Newton’s method.

Newton’s method is a Quasi-Newton method if and only if f is a non-
degenerate quadratic function (Exercise 35). Hence, Quasi-Newton meth-
ods do not generalize Newton’s method but form a family of related algo-
rithms.

The first Quasi-Newton method was developed by William C. Davi-
don in 1956; he desperately needed iterations that were faster than those
of Newton’s method in order obtain results in the short time spans be-
tween expected failures of the room-sized computer that he used to run
his computations on.

But the paper he wrote about his new method got rejected for lacking
a convergence analysis, and for allegedly dubious notation. It became a
very influential Technical Report in 1959 [Dav59] and was finally officially
published in 1991, with a foreword giving the historical context [Dav91].
Ironically, Quasi-Newton methods are today the methods of choice in a
number of relevant machine learning applications.

7.4 Greenstadt’s approach (Optional Material)
Suppose that in a Quasi Newton method, we have the iterates xt�1,xt

as well as the matrix H�1
t�1; now we want to compute a matrix H�1

t to
perform the next Quasi-Newton step (7.6). Greenstadt’s approach from
1970 [Gre70] is to update H�1

t�1 by an “error matrix” Et to obtain

H�1
t = H�1

t�1 + Et.

80

Moreover, the errors should be as small as possible, subject to the con-
straints that H�1

t is symmetric and satisfies the secant condition (7.7). A
natural and easy measure of error introduced by an update matrix E is its
squared Frobenius norm

kEk
2
F :=

dX

i=1

dX

j=1

E2
ij.

The Frobenius norm itself is simply the 2-norm of the long vector with d2

entries that we get by writing all matrix entries next to each other. Since
Greenstadt considered the resulting Quasi-Newton method as “too spe-
cialized”, he searched for a compromise between variability in the method
and simplicity of the resulting formulas. This led him to minimize the er-
ror term

kAEA>
k
2
F ,

where A 2 Rd⇥d is some fixed invertible transformation matrix. If A = I ,
we recover the squared Frobenius norm of E.

Let us now fix t and simplify notation by setting

H := H�1
t�1,

H 0 := H�1
t ,

E := Et,

� := xt � xt�1,

y = rf(xt)�rf(xt�1),

r = � �Hy.

The update formula then is

H 0 = H + E, (7.8)

and the secant condition rf(xt)�rf(xt�1) = Ht(xt � xt�1) becomes

H 0
y = � (, Ey = r). (7.9)

Greenstadt’s approach can now be distilled into the following convex
constrained minimization problem in the d2 variables Eij :

minimize 1
2kAEA>

k
2
F

subject to Ey = r

E>
� E = 0

(7.10)

81

7.4.1 The method of Lagrange multipliers
Minimization subject to equality constraints can be done via the method
of Lagrange multipliers. Here we need it only for the case of linear equality
constraints in which case the method assumes a very simple form.

Theorem 7.1. Let f : Rd
! R be convex and differentiable, C 2 Rn⇥d for some

n 2 N, e 2 Rn, x?
2 Rd such that Cx

? = e. Then the following two statements
are equivalent.

(i) x
? = argmin{f(x) : x 2 Rd, Cx = e}

(ii) There exists a vector � 2 Rd such that

rf(x?)> = �>C.

The entries of � are known as the Lagrange multipliers.

Proof. The easy direction is (ii))(i): if � as specified exists and x 2 Rn

satisfies Cx = e, we get

rf(x?)>(x� x
?) = �>C(x� x

?) = �>(e� e) = 0.

Hence, x? is a minimizer of f over {x 2 Rd : Cx = e} by the optimality
condition of Lemma 1.17.

The other direction is Exercise 36.

In order to apply this method to (7.10), we need to compute the gradi-
ent of f(E) = 1

2kAEA>
k
2
F . Formally, this is a d2-dimensional vector, but it

is customary and more practical to write it as a matrix again,

rf(E) =

✓
@f(E)

@Eij

◆

1i,jd

.

Fact 7.2 (Exercise 37). Let A,B 2 Rd⇥d two matrices. With f : Rd⇥d
! R,

f(E) := 1
2kAEBk

2
F , we have

rf(E) = A>AEBB>.

82

The second step is to write the system of equations Ey = r, E>
�E = 0

in Greenstadt’s convex program (7.10) in matrix form Cx = e so that we
can apply the method of Lagrange multipliers according to Theorem 7.1.

As there are d + d2 equations in d2 variables, it is best to think of the
rows of C as being indexed with elements i 2 [d] := {1, . . . , d} for the first
d equations Ey = r, and pairs (i, j) 2 [d] ⇥ [d] for the last d2 symmetry
constraints (more than half of which are redundant but we don’t care).
Columns of C are indexed with pairs (i, j) as well.

Let us denote by � 2 Rd the Lagrange multipliers for the first d equa-
tions and � 2 Rd⇥d the ones for the last d2 ones.

In column (i, j) of C corresponding to variable Eij , we have entry yj in
row i as well as entries 1 (row (j, i)) and �1 (row (i, j)). Taking the inner
product with the Lagrange multipliers, this column therefore yields

�iyj + �ji � �ij.

After aggregating these entries into a d ⇥ d matrix, Theorem 7.1 tells us
that we should aim for equality with rf(E) as derived in Fact 7.2. We
have proved the following intermediate result.

Lemma 7.3. An update matrix E? satisfying the constraints Ey = r (secant
condition in the next step) and E>

� E = 0 (symmetry) is a minimizer of the
error function f(E) := 1

2kAEA>
k
2
F subject to the aforementioned constraints if

and only if there exists a vector � 2 Rd and a matrix � 2 Rd⇥d such that

WE?W = �y> + �>
� �, (7.11)

where W := A>A (a symmetric and posititive definite matrix).

Note that �y> is the outer product of a column and a row vector and
hence a matrix. As we assume A to be invertible, the quadratic func-
tion f(E) is easily seen to be strongly convex and as a consequence has
a unique minimizer E? subject to the set of linear equations in (7.10) (see
Lemma 2.9 which also applies if we minimize over a closed set). Hence,
we know that the miminmizer E? and corresponding Lagrange multipiers
�,� exist.

83

7.4.2 The Greenstadt family
We need to solve the system of equations

Ey = r, (7.12)
E>

� E = 0, (7.13)
WEW = �y> + �>

� �. (7.14)

This system is linear in E,�,�, hence easy to solve computationally. How-
ever, we want a formula for the unique solution E? in terms of the pa-
rameters W,y,� = r +Hy. In the following derivation, we closely follow
Greenstadt [Gre70, pages 4–5].

With M := W�1 (which exists since W = A>A is positive definite),
(7.14) can be rewritten as

E = M
�
�y> + �>

� �
�
M. (7.15)

Transposing this system (using that M is symmetric) yields

E> = M
�
y�> + �� �>�M.

By symmetry (7.13), we can subtract the latter two equations to obtain

M
�
�y>

� y�> + 2�>
� 2�

�
M = 0.

As M is invertible, this is equivalent to

�>
� � =

1

2

�
y�>

� �y>� ,

so we can eliminate � by substituting back into (7.15):

E = M

✓
�y> +

1

2

�
y�>

� �y>�
◆
M =

1

2
M

�
�y> + y�>�M. (7.16)

To also eliminate �, we now use (7.12)—the secant condition in the next
step—to get

Ey =
1

2
M

�
�y> + y�>�My = r.

Premultiplying with 2M�1 gives

2M�1
r =

�
�y> + y�>�My = �y>My + y�>My.

84

Hence,
� =

1

y>My

�
2M�1

r� y�>My
�
. (7.17)

To get rid of � on the right hand side, we premultiply this with y
>M to

obtain

y
>M�| {z }

z

=
1

y>My

0

@2y>
r� (y>My)(�>My| {z }

z

)

1

A =
2y>

r

y>My
� �>My| {z }

z

It follows that
z = �>My =

y
>
r

y>My
.

This in turn can be substituted into the right-hand side of (7.17) to remove
� there, and we get

� =
1

y>My

✓
2M�1

r�
(y>

r)

y>My
y

◆
.

Consequently,

�y> =
1

y>My

✓
2M�1

ry
>
�

(y>
r)

y>My
yy

>
◆
,

y�> =
1

y>My

✓
2yr>M�1

�
(y>

r)

y>My
yy

>
◆
.

This gives us an explicit formula for E, by substituting the previous ex-
pressions back into (7.16). For this, we compute

M�y>M =
1

y>My

✓
2ry>M �

(y>
r)

y>My
Myy

>M

◆
,

My�>M =
1

y>My

✓
2Myr

>
�

(y>
r)

y>My
Myy

>M

◆
,

and consequently,

E =
1

2
M

�
�y> + y�>�M =

1

y>My

✓
ry

>M +Myr
>
�

(y>
r)

y>My
Myy

>M

◆
.

(7.18)

85

Finally, we use r = � � Hy to obtain the update matrix E? in terms
of the original parameters H = H�1

t�1 (previous approximation of the in-
verse Hessian that we now want to update to H�1

t = H 0 = H + E?),
� = xt � xt�1 (previous Quasi-Newton step) and y = rf(xt) � rf(xt�1)
(previous change in gradients). This gives us the Greenstadt family of
Quasi-Newton methods.

Definition 7.4. Let M 2 Rd⇥d be a symmetric and invertible matrix. Consider
the Quasi-Newton method

xt+1 = xt �H�1
t rf(xt), t � 1,

where H0 = I (or some other positive definite matrix), and H�1
t = H�1

t�1 + Et is
chosen for all t � 1 in such a way that H�1

t is symmetric and satisfies the secant
condition

rf(xt)�rf(xt�1) = Ht(xt � xt�1).

For any fixed t, set

H := H�1
t�1,

H 0 := H�1
t ,

� := xt � xt�1,

y = rf(xt)�rf(xt�1),

and define

E? =
1

y>My

⇣
�y>M + My�>

�Hyy
>M �Myy

>H

�
1

y>My
(y>� � y

>Hy)Myy
>M

⌘
. (7.19)

If the update matrix Et = E? is used, the method is called the Greenstadt
method with parameter M .

7.4.3 The BFGS method
In his paper, Greenstadt suggested two obvious choices for the matrix M
In Definition 7.4, namely M = H (the previous approximation of the in-
verse Hessian) and M = I . In the next paper of the same issue of the same

86

journal, Goldfarb suggested to use the matrix M = H 0, the next approxi-
mation of the inverse Hessian. Even though we don’t yet have it, we can
use it in the formula (7.19) since we know that H 0 will by design satisfy the
secant condition H 0

y = �. And as M always appears next to y in (7.19),
My = H 0

y = �, so H 0 disappears from the formula!

Definition 7.5. The BFGS method is the Greenstadt method with parameter
H 0 = H�1

t in step t, in which case the update matrix E? assumes the form

E? =
1

y>�

⇣
2��>

�Hy�>
� �y>H �

1

�>y
(y>� � y

>Hy)��>
⌘

=
1

y>�

⇣
�Hy�>

� �y>H +
⇣
1 +

y
>Hy

y>�

⌘
��>

⌘
. (7.20)

The method is named after Broyden, Fletcher, Goldfarb and Shanno
who all came up with it independently around 1970. Greenstadt’s name is
mostly forgotten.

Let’s take a step back and see what we have achieved. Recall that our
starting point was that Newton’s method needs to compute and invert
Hessian matrices in each iteration and therefore has in practice a cost of
O(d3) per iteration. Did we improve over this?

First of all, any method in Greenstadt’s family avoids the computation
of Hessian matrices altogether. Only gradients are needed. In the BFGS
method in particular, the cost per iteration drops to O(d2). Indeed, the
computation of the update matrix E? in Definition 7.5 reduces to matrix-
vector multiplications and outer-product computations, all of which can
be done in O(d2) time.

Newton and Quasi-Newton methods are often performed with scaled
steps. This means that the iteration becomes

xt+1 = xt � ↵tH
�1
t rf(xt), t � 1, (7.21)

for some ↵t 2 R+. This parameter can for example be chosen such that
f(xt+1) is minimized (line search). Another approach is backtracking line
search where we start with ↵t = 1, and as long as this does not lead to
sufficient progress, we halve ↵t. Line search ensures that the matrices H�1

t

in the BFGS method remain positive definite [Gol70].
As the Greenstadt update method just depends on the step � = xt �

xt�1 but not on how it was obtained, the update works in exactly the same
way as before even if scaled steps are being used.

87

7.4.4 The L-BFGS method
In high dimensions d, even an iteration cost of O(d2) as in the BFGS method
may be prohibitive. In fact, already at the end of the 1970s, the first limited
memory (and limited time) variants of the method have been proposed.
Here we essentially follow Nocedal [Noc80]. The idea is to use only in-
formation from the previous m iterations, for some small value of m, and
“forget” anything older. In order to describe the resulting L-BFGS method,
we first rewrite the BFGS update formula in product form.

Observation 7.6. With E? as in Definition 7.5 and H 0 = H + E?, we have

H 0 =

✓
I �

�y>

y>�

◆
H

✓
I �

y�>

y>�

◆
+

��>

y>�
. (7.22)

To verify this, simply expand the product in the right-hand side and
compare with (7.20).

We further observe that we do not need the actual matrix H 0 = H�1
t to

perform the next Quasi-Newton step (7.6), but only the vector H 0
rf(xt).

Here is the crucial insight.

Lemma 7.7. Let H,H 0 as in Observation 7.6, and let g0
2 Rd. Suppose that

we have an oracle to compute s = Hg for any vector g. Then s
0 = H 0

g
0 can be

computed with one oracle call and O(d) additional arithmetic operations.

Proof. From (7.22), we conclude that

H 0
g
0 =

✓
I �

�y>

y>�

◆
H

✓
I �

y�>

y>�

◆
g
0

| {z }
g| {z }

s| {z }
w

+
��>

y>�
g
0

| {z }
h

| {z }
z

.

We compute the vectors h,g, s,w, z in turn. We have

h =
��>

y>�
g
0 = �

�>
g
0

y>�
,

88

so h can be computed with two inner products, a real division, and a mul-
tiplication of � with a scalar. For g, we obtain

g =

✓
I �

y�>

y>�

◆
g
0 = g

0
� y

�>
g
0

y>�
.

which is a multiplication of y with a scalar that we already know, followed
by a vector addition. To get s = Hg, we call the oracle. For w, we similarly
have

w =

✓
I �

�y>

y>�

◆
s = s� �

y
>
s

y>�
,

which is one inner product (the other one we already know), a real divison,
a multiplication of � with a scalar, and a vector addition. Finally,

H 0
g
0 = z = w + h

is a vector addition. In total, we needed three inner product computations,
three scalar multiplications, three vector additions, two real divisions, and
one oracle call.

How do we implement the oracle? We simply apply the previous
Lemma recursively. Let

�k = xk � xk�1,

yk = rf(xk)�rf(xk�1)

be the values of � and y in iteration k. When we perform the Quasi-
Newton step xt+1 = xt � H�1

t rf(xt) in iteration t � 1, we have already
computed these vectors for k = 1, . . . , t. Using Lemma 7.7, we could there-
fore call the recursive procedure in Figure 7.2 with k = t,g0 = rf(xt) to
compute the required vector H�1

t rf(xt) in iteration t. To maintain the im-
mediate connection to Lemma 7.7, we refrain from introducing extra vari-
ables for values that occur several times; but in an actual implementation,
this would be done, of course.

By Lemma 7.7, the runtime of BFGS-STEP(t,rf(xt)) is O(td). For t >
d, this is slower (and needs more memory) than the standard BFGS step
according to Definition 7.5 which always takes O(d2) time.

The benefit of the recursive variant is that it can easily be adapted to
a step that is faster (and needs less memory) than the standard BFGS step.

89

function BFGS-STEP(k,g0) . returns H�1
k g

0

if k = 0 then
return H�1

0 g
0

else . apply Lemma 7.7

h = �
�>

k g
0

y>
k �k

g = g
0
� y

�>
k g

0

y>
k �k

s = BFGS-STEP(k � 1,g)

w = s� �k
y
>
k s

y>
k �k

z = w + h

return z

end if
end function

Figure 7.2: Recursive view of the BFGS method. To compute H�1
t rf(xt),

call the function with arguments (t,rf(xt)); values �k,yk from iterations
1, . . . , t are assumed to be available.

The idea is to let the recursion bottom out after a fixed number m of recur-
sive calls (in practice, values of m  10 are not uncommon). The step then
has runtime O(md) which is a substantial saving over the standard step if
m is much smaller than d.

The only remaining question is what we return when the recursion
bottoms out prematurely at k = t � m. As we don’t know the matrix
H�1

t�m, we cannot return H�1
t�mg

0 (which would be the correct output in this
case). Instead, we pretend that we have started the whole method just now
and use our initial matrix H0 instead of Ht�m.1 The resulting algorithm is
depicted in Figure 7.3.

Note that the L-BFGS method is still a Quasi-Newton method as long
as m � 1: if we go through at least one update step of the form H 0 = H+E,
the matrix H 0 will satisfy the secant condition by design.

1In practice, we can do better: as we already have some information from previous
steps, we can use this information to construct a more tuned H0. We don’t go into this
here.

90

function L-BFGS-STEP(k, `,g0) . `  k; returns s0 ⇡ H�1
k g

0

if ` = 0 then
return H�1

0 g
0

else . apply Lemma 7.7

h = �
�>

k g
0

y>
k �k

g = g
0
� y

�>
k g

0

y>
k �k

s = L-BFGS-STEP(k � 1, `� 1,g)

w = s� �k
y
>
k s

y>
k �k

z = w + h

return z

end if
end function

Figure 7.3: The L-BFGS method. To compute H�1
t rf(xt) based on the pre-

vious m iterations, call the function with arguments (t,m,rf(xt)); values
�k,yk from iterations t�m+ 1, . . . , t are assumed to be available.

7.5 Exercises
Exercise 34. Consider a step of the secant method:

xt+1 = xt � f(xt)
xt � xt�1

f(xt)� f(xt�1)
, t � 1.

Assuming that xt 6= xt�1 and f(xt) 6= f(xt�1), prove that the line through
the two points (xt�1, f(xt�1)) and (xt, f(xt)) intersects the x-axis at the point
x = xt+1.

Exercise 35. Let f : Rd
! R be a twice differentiable function with nonzero

Hessians everywhere. Prove that the following two statements are equivalent.

(i) f is a nondegenerate quadratic function, meaning that

f(x) =
1

2
x
>Mx� q

>
x+ c,

where M 2 Rd⇥d is an invertible symmetric matrix, q 2 Rd, c 2 R (see
also Lemma 6.1).

91

(ii) Applied to f , Newton’s update step

xt+1 := xt �r
2f(xt)

�1
rf(xt), t � 1

defines a Quasi-Newton method for all x0,x1 2 R
d.

Exercise 36. Prove the direction (i))(ii) of Theorem 7.1! You may want to do
proceed in the following steps.

1. Prove the Poor Man’s Farkas Lemma: a system of linear equations Ax =
b in d variables has a solution if and only for all � 2 Rd, �>A = 0

> implies
�>

b = 0. (You may use the fact that the row rank of a matrix equals its
column rank.)

2. Argue that x? = argmin{rf(x?)>x : x 2 Rd, Cx = e}.

3. Apply the Poor Man’s Farkas Lemma.

Exercise 37. Prove Fact 7.2!

92

Bibliography

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimiza-
tion. Cambridge University Press, New York, NY, USA, 2004.
https://web.stanford.edu/˜boyd/cvxbook/.

[Dav59] William C. Davidon. Variable metric method for minimiza-
tion. Technical Report ANL-5990, AEC Research and Devel-
opment, 1959.

[Dav91] William C. Davidon. Variable metric method for minimiza-
tion. SIAM J. Optimization, 1(1):1–17, 1991.

[DSSSC08] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar
Chandra. Efficient projections onto the 1-ball for learning in
high dimensions. In Proceedings of the 25th International Confer-
ence on Machine Learning, pages 272–279, 07 2008.

[Gol70] D. Goldfarb. A family of variable-metric methods derived by
variational means. Mathematics of Computation, 24(109):23–26,
1970.

[Gre70] J. Greenstadt. Variations on variable-metric methods. Mathe-
matics of Computation, 24(109):1–22, 1970.

[Noc80] J. Nocedal. Updating quasi-newton matrices with limited stor-
age. Mathematics of Computation, 35(151):773–782, 1980.

[NP06] Yurii Nesterov and B.T. Polyak. Cubic regularization of new-
ton method and its global performance. Mathematical Program-
ming, 108(1):177–205, Aug 2006.

93

https://web.stanford.edu/~boyd/cvxbook/

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the
LASSO. J. R. Statist. Soc. B, 58(1):267–288, 1996.

[Vis14] Nisheeth Vishnoi. Lecture notes on fundamentals of con-
vex optimization, 2014. https://tcs.epfl.ch/files/
content/sites/tcs/files/Lec3-Fall14-Web.pdf.

[Zim16] Judith Zimmermann. Information Processing for Effective and
Stable Admission. PhD thesis, ETH Zurich, 2016. .

94

https://tcs.epfl.ch/files/content/sites/tcs/files/Lec3-Fall14-Web.pdf
https://tcs.epfl.ch/files/content/sites/tcs/files/Lec3-Fall14-Web.pdf

