
Chapter 9

Coordinate Descent
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9.1 Coordinate Descent
Coordinate descent methods generate a sequence {xt}t�0 of iterates as fol-
lows:

xt+1 := xt + �eit , (9.1)

where ei denotes the i-th unit basis vector inRd, and � is a suitable stepsize
for the selected coordinate of our objective function. Here we will focus
on the gradient-based choice of the stepsize as

xt+1 := xt �
1
Lritf(xt) eit , (9.2)

As an alternative, for some problems we can find an even better step-
size by solving the single-variable minimization argmin�2R f(xt + �eit) in
closed form.

9.2 Randomized Coordinate Descent
In random coordinate descent, the active coordinate it in each step is chosen
uniformly at random from the set [d].

[Nes12] shows that randomized coordinate descent achieves a faster
convergence rate than gradient descent, if our problem of interest has d
variables and it is assumed to be d times cheaper to update one coordinate
than it is to compute the full gradient.

Convergence Analysis. To analyze coordinate descent methods, we as-
sume coordinate-wise smoothness of f , which is defined as

f(x+ �ei)  f(x) + �rif(x) +
L

2
�2

8x 2 Rd, 8� 2 R, (9.3)

for any coordinate i. As with our familiar definition of smoothness, the
property here is equivalent to the gradient being coordinate-wise Lipschitz
continuous, that is |rif(x+ �ei)�rif(x)|  L|�|, 8x 2 Rd, � 2 R, i 2 [d].
We have seen the equivalence in Lemma 2.7 previously.

If we additionally assume strong convexity, we can obtain a fast linear
convergence rate as follows.
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Theorem 9.1. Consider minimization of a function f which is coordinate-wise
smooth with constant L as in (9.3), and is strongly convex with parameter µ > 0.
Then, coordinate descent with a stepsize of 1/L,

xt+1 := xt �
1
Lritf(xt) eit .

when choosing the active coordinate it uniformly at random, has an expected lin-
ear convergence rate of

E[f(xt)� f ?] 
⇣
1�

µ

dL

⌘t

[f(x0)� f ?].

Proof. We follow [KNS16]. By pluggin the update rule (9.1) into the smooth-
ness condition (9.3) we have the step improvement

f(xt+1)  f(xt)�
1

2L
|ritf(xt)|

2.

By taking the expectation of both sides with respect to it we have

E [f(xt+1)]  f(xt)�
1

2L
E
⇥
|ritf(xt)|

2
⇤

= f(xt)�
1

2L

1

d

X

i

|rif(xt)|
2

= f(xt)�
1

2dL
krf(xt)k

2.

We now use the the fact that strongly convex functions satisfy 1
2krf(x)k2 �

µ(f(x)� f ?) 8 x. This is proven in Lemma 9.2 below and is a property of
separate interest. Subtracting f ? from both sides, we therefore obtain

E[f(xt+1)� f ?] 
⇣
1�

µ

dL

⌘
[f(xt)� f ?].

Applying this recursively and using iterated expectations yields the result.

For the algorithm variant using exact coordinate optimization instead
of using the fixed stepsize 1/L, the same result still holds (since progress
per step is at least as good).

97



9.2.1 The Polyak-Łojasiewicz Condition
A function f satisfies the Polyak-Łojasiewicz Inequality (PL) if the following
holds for some µ > 0,

1
2krf(x)k2 � µ(f(x)� f ?), 8 x. (9.4)

The condition was proposed by Polyak in 1963, and also by Łojasiewicz in
the same year. It implies the quadratic growth condition.

Lemma 9.2 (Strong Convexity ) PL). Let f be strongly convex with parameter
µ > 0. Then f satisfies PL for the same µ.

Proof. For all x and y we have

f(y) � f(x) + hrf(x),y � xi+
µ

2
ky � xk

2 .

minimizing each side of the inequality with respect to y we obtain

f(x?) � f(x)�
1

2µ
krf(x)k2,

which implies the PL inequality holds with the same value µ.

The PL condition is a weaker condition than strong convexity. For ex-
ample, it can be shown that it is satisfied for all compositions f(x) :=
g(Ax) for strongly convex g and arbitrary matrix A, including least squares
regression and many other applications in machine learning.

As we have seen in the proof of the above theorem, the linear conver-
gence rate holds not only for strongly convex objectives but indeed for the
wider class of any f satisfying the PL condition:

Corollary 9.3. For minimization of a function f which is coordinate-wise smooth
with constant L as in (9.3), satisfies the PL inequality (9.4), and has a non-empty
solution set X ?, random coordinate descent with a stepsize of 1/L has the expected
linear convergence rate of

E[f(xt)� f ?] 
⇣
1�

µ

dL

⌘t

[f(x0)� f ?].

Using the same proof technique, gradient descent can be shown to ex-
hibit a linear convergence rate for PL functions as well, see Exercise 38.
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9.2.2 Importance Sampling
Uniformly random selection of the active coordinate might not always be
the best choice. Let us consider an individual smoothness constant Li for
each coordinate i, that is

f(x+ �ei)  f(x) + �rif(x) +
Li
2 �

2 (9.5)

for all x 2 Rd and � 2 R. In this case, instead of uniform random sampling
of the active coordinate, it makes sense to sample proportional to the Li

values as suggested by [Nes12]. Formally, the selection rules picks i with
probability P [it = i] = LiP

i Li
.

For coordinate descent using this modified sampling probabilities, and
using a stepsize of 1/Lit , the same convergence argument as above can be
shown (Exercise 39) to give the faster rate of

E[f(xt)� f ?] 
⇣
1�

µ

dL̄

⌘t

[f(x0)� f ?],

where L̄ = 1
d

Pd
i=1 Li now is the average of all coordinate-wise smoothness

constants. Note that this value can be much smaller than the global L we
have used above, since that one was required to hold for all i so has to be
chosen as L = maxi Li instead.

Similar importance sampling strategies work for the different setting
of stochastic gradient descent (SGD) on sum-structured problems. Prac-
tical performance of importance sampling over uniform sampling can be
very significant for coordinate descent (or SGD) in particular for sparse or
inhomogeneous data.

9.3 Steepest Coordinate Descent
In contrast to random coordinate descent, steepest coordinate descent (or
greedy coordinate descent) chooses the active coordinate according to

it := argmax
i2[d]

|rif(xt)| . (9.6)

which is also called the Gauss-Southwell (GS) rule.
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Convergence Analysis. It is easy to show that the same convergence rate
which we have obtained for random coordinate descent in Theorem 9.1
also holds for steepest coordinate descent. To see this, the only ingredient
we need is the fact that

max
i

|rif(x)|
2
�

1

d

X

i

|rif(x)|
2 ,

and since we now have a deterministic algorithm, there is no need to take
expectations in the proof.

Corollary 9.4. For minimization of a function f which is coordinate-wise smooth
with constant L as in (9.3), and is strongly convex with parameter µ > 0, steepest
coordinate descent with a stepsize of 1/L has the linear convergence rate of

E[f(xt)� f ?] 
⇣
1�

µ

dL

⌘t

[f(x0)� f ?].

It was shown by [NSL+15] that a stronger convergence result can be
obtained for this algorithm when the strong convexity of f is measured
with respect to the `1-norm instead of the standard Euclidean norm, i.e.

f(y) � f(x) + hrf(x),y � xi+
µ1

2
ky � xk

2
1 .

Theorem 9.5. For minimization of a function f which is coordinate-wise smooth
with constant L as in (9.3), and is strongly convex w.r.t. the `1-norm with pa-
rameter µ1 > 0, steepest coordinate descent with a stepsize of 1/L has the linear
convergence rate of

E[f(xt)� f ?] 
⇣
1�

µ1

L

⌘t

[f(x0)� f ?].

The proof again directly follows the one of Theorem 9.1, but uses the
following lemma measuring the PL inequality in the `1-norm:

Lemma 9.6. Let f be strongly convex w.r.t. the `1-norm with parameter µ1 > 0.
Then f satisfies

1
2 krf(x)k21 � µ1(f(x)� f ?).

The proof of the lemma is not given here, but follows the same strat-
egy as in the earlier analogue Lemma 9.2. It then uses a property of convex
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conjugate functions (coming from the fact that the norms k.k1 and k.k1 are
dual to each other).

In summary, we have that steepest coordinate descent can be up to d
times faster than random coordinate descent in terms of number of itera-
tions. However, of course the selection rule is now more costly. Naively,
finding the steepest coordinate would require computing the full gradient,
and might also cost d times more than using a random coordinate.

Steepest coordinate descent is nevertheless an attractive choice for prob-
lem classes where we can obtain (or maintain) the steepest coordinate ef-
ficiently. This includes several practical case, for example when the gradi-
ents are sparse, e.g. because the original data is sparse. Another important
use-case is for problems where we would want to find a solution in as few
steps as possible, i.e. a sparse solution. For example, the Lasso problem is
interesting in terms of both mentioned aspects. Last but not least, we note
that the steepest selection rule (9.6) looks very similar to the Frank-Wolfe
algorithm, if one is optimizing over an `1-ball. This is not a coincidence,
but indeed the two algorithms and their convergence are closely related in
that case.

9.4 Non-smooth objectives
So far, we have only considered unconstrained and smooth optimization
problems in this chapter.

Figure 9.1: A smooth function: f(x) := kxk
2.
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We have just proven that coordinate decent converges for differen-
tiable, smooth f . What if f is not differentiable at all points? Earlier, when
we analyzed gradient methods, we saw that in that case the extension to
subgradients was straightforward and maintained the convergence results
up to a small slowdown. Unfortunately for coordinate descent, the situa-
tion is not that easy.

Even when using exact minimization on each coordinate step, the al-
gorithm can get permanently stuck in non-optimal points, as for example
shown in the objective function of Figure 9.2: Not all hope is lost how-

Figure 9.2: A non-smooth function: f(x) := kxk
2 + |x1 � x2|.

ever. Consider the class of composite problems (recall proximal gradient
descent as we discussed in Section 3.6),

f(x) := g(x) + h(x) with h(x) =
X

i

hi(xi) , (9.7)

for g convex and smooth, and h(x) =
P

i hi(xi) separable with hi convex
but possibly non-smooth. For this class of problems, coordinate descent
with exact minimization converges to a global optimum, as illustrated in
Figure 9.3.

One very important class of applications here are smooth functions f
combined with `1-regularization, such as the Lasso.

102



Figure 9.3: A function with separable non-smooth part: f(x) := kxk
2+kxk1.

9.5 Applications
Coordinate descent methods are used widely in classic machine learning
applications. Variants of coordinate methods form the state of the art for
the class of generalized linear models, including linear classifiers and re-
gression models, as long as separable convex regularizers are used (e.g. `1
or `2 norm regularization).

For least-squares linear regression f(x) := kAx� bk
2, exact coordinate

minimization can easily be performed readily in closed form.

Lasso. The optimization problem for sparse least squares linear regres-
sion (also known as the Lasso) is given by

min
x2Rn

kAx� bk
2 + �kxk1 (9.8)

for some regularization parameter � > 0. It is an instance of our class of
composite optimization problems (9.7).

Support Vector Machines. The original optimization problem for the
Support Vector Machine (SVM) is given by

min
w2Rd

nX

i=1

`(yiA
>
i w) +

�

2
kwk

2 (9.9)
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where ` : R ! R, `(z) := max{0, 1 � z} is the hinge loss function. Here for
any i, 1  i  n, the vector Ai 2 R

d is the i-th data example, and yi 2 {±1}
is the corresponding label.

The dual optimization problem for the SVM is given by

max
↵2Rn

↵>
1�

1
2�↵

>Y A>AY↵ such that 0  ↵i  1 8i (9.10)

where Y := diag(y), and A 2 Rd⇥n again collects all n data examples
as its columns. The dual problem is an instance of our class of compos-
ite optimization problems (9.7), since the non-differentiable box-constraint
0  ↵i  1 8i can be written as a separable g as required.

9.6 Exercises
Exercise 38 (Alternative analysis for gradient descent). Let f be smooth with
constant L in the classical sense, and satisfy the PL inequality (9.4). Let the prob-
lem minx f(x) have a non-empty solution set X ?. Prove that gradient descent
with a stepsize of 1/L has a global linear convergence rate

f(xt)� f ?


⇣
1�

µ

L

⌘t

(f(x0)� f ?).

Exercise 39 (Importance Sampling). Consider random coordinate descent with
selecting the i-th coordinate with probability proportional to the Li value, where
Li is the individual smoothness constant for each coordinate i as in (9.5).

When using a stepsize of 1/Lit , prove that we obtain the faster rate of

E[f(xt)� f ?] 
⇣
1�

µ

dL̄

⌘t

[f(x0)� f ?],

where L̄ = 1
d

Pd
i=1 Li now is the average of all coordinate-wise smoothness con-

stants. Note that this value can be much smaller than the global L we have
used above, since that one was required to hold for all i so has to be chosen as
L = maxi Li instead.

Can you come up with an example from machine learning where L̄ ⌧ L?

Exercise 40. Derive the solution to exact coordinate minimization for the Lasso
problem (9.8), for the i-th coordinate. Write A�i for the (d�1)⇥n matrix obtained
by removing the i-th column from A.
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