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Outline

I Convexity, Gradient Methods, Constrained Optimization,
Proximal algorithms, Subgradient Methods, Stochastic
Gradient Descent, Coordinate Descent, Frank-Wolfe,
Accelerated Methods, Primal-Dual context and certificates,
Lagrange and Fenchel Duality, Second-Order Methods
including Quasi-Newton, Derivative-Free Optimization.

I Advanced Contents:
I Parallel and Distributed Optimization Algorithms, Synchronous

and Asynchronous Communication.

I Computational and Statistical Trade-Offs (Time vs Data vs
Accuracy). Variance Reduced Methods, and Lower Bounds.

I Non-Convex Optimization: Convergence to Critical Points,
Saddle-Point methods, Alternating minimization for matrix
and tensor factorizations
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Course Organization

I Lectures

I Exercises

I Mini-Project

Grading: Written final exam, closed book

See details on course webpage on github
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Optimization

I General optimization problem (unconstrained minimization)

minimize f(x)

with x ∈ Rd

I candidate solutions, variables, parameters x ∈ Rd

I objective function f : Rd → R

I typically: technical assumption: f is continuous and
differentiable
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Why? And How?

Optimization is everywhere

machine learning, big data, statistics, data analysis of all kinds, finance,

logistics, planning, control theory, mathematics, search engines,

simulations, and many other applications ...

I Mathematical Modeling:
I defining & modeling the optimization problem

I Computational Optimization:
I running an (appropriate) optimization algorithm
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Optimization for Machine Learning

I Mathematical Modeling:
I defining & and measuring the machine learning model

I Computational Optimization:
I learning the model parameters

But what about deep learning?
Convex theory does not apply, so is useless?
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Optimization Algorithms

I Optimization at large scale: simplicity rules!

I Main approaches:

I Gradient Descent

I Stochastic Gradient Descent (SGD)

I Coordinate Descent

I History:
I 1847: Cauchy proposes gradient descent

I 1950s: Linear Programs, soon followed by non-linear, SGD

I 1980s: General optimization, convergence theory

I 2005-today: Large scale optimization, convergence of SGD

EPFL Machine Learning and Optimization Laboratory 7/29



Example: Coordinate Descent

Goal: Find x? ∈ Rd minimizing f(x). (Example: d = 2)

x?

x1

x2

Idea: Update one coordinate at a time, while keeping others fixed.
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Chapter 1

Theory of Convex Functions
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Convex Sets

A set C is convex if the line segment between any two points of C
lies in C, i.e., if for any x,y ∈ C and any λ with 0 ≤ λ ≤ 1, we
have

λx+ (1− λ)y ∈ C.24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted convC, is the set of all convex combinations
of points in C:

convC = {θ1x1 + · · ·+ θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · ·+ θk = 1}.

As the name suggests, the convex hull convC is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then convC ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

*Figure 2.2 from S. Boyd, L. Vandenberghe

Left Convex.

Middle Not convex, since line segment not in set.

Right Not convex, since some, but not all boundary points
are contained in the set.
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Properties of Convex Sets

I Intersections of convex sets are convex

Observation 1.2. Let Ci, i ∈ I be convex sets, where I is a
(possibly infinite) index set. Then C =

⋂
i∈I Ci is a convex

set.

I (later) Projections onto convex sets are unique,
and often efficient to compute

PC(x
′) := argminy∈C ‖y − x′‖
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Convex Functions

Definition

A function f : Rd → R is convex if (i) dom(f) is a convex set
and (ii) for all x,y ∈ dom(f), and λ with 0 ≤ λ ≤ 1, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x 6= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.

*Figure 3.1 from S. Boyd, L. Vandenberghe

Geometrically: The line segment between (x, f(x)) and (y, f(y))
lies above the graph of f .
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Motivation: Convex Optimization

Convex Optimization Problems are of the form

min f(x) s.t. x ∈ C

where both

I f is a convex function

I C is a convex set (note: Rd is convex)

Properties of Convex Optimization Problems

I Every local minimum is a global minimum, see next...
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Motivation: Solving Convex Optimization - Provably

For convex optimization problems, all algorithms

I Coordinate Descent

I Gradient Descent

I Stochastic Gradient Descent

I Projected [Stoch.] Gradient Descent

do converge to the global optimum! (assuming f differentiable)

Example Theorem: For convex problems, the convergence rate
of “most” of the above algorithms is proportional to 1

t , i.e.

f(xt)− f(x?) ≤
c

t

(where x? is some optimal solution to the problem.)
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Motivation: Convergence Theory
1.6. Overview of the results and disclaimer 243

f Algorithm Rate # Iter Cost/iter

non-smooth center of
gravity exp

!
≠ t
n

"
n log

! 1
Á

" 1 Ò,
1 n-dim

s

non-smooth ellipsoid
method

R
r

exp
!
≠ t
n2

"
n2 log

!
R
rÁ

" 1 Ò,
mat-vec ◊

non-smooth Vaidya Rn
r

exp
!
≠ t
n

"
n log

!
Rn
rÁ

" 1 Ò,
mat-mat ◊

quadratic CG
exact

exp
!
≠ t

Ÿ

" n
Ÿ log

! 1
Á

" 1 Ò

non-smooth,
Lipschitz PGD RL/

Ô
t R2L2/Á2 1 Ò,

1 proj.

smooth PGD —R2/t —R2/Á
1 Ò,

1 proj.

smooth AGD —R2/t2 R


—/Á 1 Ò

smooth
(any norm) FW —R2/t —R2/Á

1 Ò,
1 LP

strong.
conv.,

Lipschitz
PGD L2/(–t) L2/(–Á) 1 Ò ,

1 proj.
strong.
conv.,
smooth

PGD R2 exp
!
≠ t

Ÿ

"
Ÿ log

1
R2

Á

2 1 Ò ,
1 proj.

strong.
conv.,
smooth

AGD R2 exp
1

≠ tÔ
Ÿ

2 Ô
Ÿ log

1
R2

Á

2
1 Ò

f + g,
f smooth,
g simple

FISTA —R2/t2 R


—/Á
1 Ò of f
Prox of g

max
yœY

Ï(x, y),
Ï smooth

SP-MP —R2/t —R2/Á
MD on X
MD on Y

linear,
X with F

‹-self-conc.
IPM ‹ exp

1
≠ tÔ

‹

2 Ô
‹ log

!
‹
Á

" Newton
step on F

non-smooth SGD BL/
Ô
t B2L2/Á2 1 stoch. Ò,

1 proj.
non-smooth,
strong. conv. SGD B2/(–t) B2/(–Á) 1 stoch. Ò,

1 proj.
f = 1

m

q
fi

fi smooth
strong. conv.

SVRG – (m+ Ÿ) log
! 1

Á

"
1 stoch. Ò

Table 1.1: Summary of the results proved in Chapter 2 to Chapter 5 and some of
the results in Chapter 6.

(Bubeck [Bub15])
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Convex Functions & Sets

Epigraph: The graph of a function f : Rd → R is defined as

{(x, f(x)) |x ∈ dom(f)},

The epigraph of a function f : Rd → R is defined as

epi(f) := {(x, α) ∈ Rd+1 |x ∈ dom(f), α ≥ f(x)},

Observation 1.4. A function is convex iff its epigraph is a convex
set.

epi(f)

x

f(x)

graph of f
epi(f)

f(x)

x
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Convex Functions & Sets

Proof: recall epi(f) := {(x, α) ∈ Rd+1 |x ∈ dom(f), α ≥ f(x)}
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Convex Functions

Examples of convex functions

I Linear functions: f(x) = a>x

I Affine functions: f(x) = a>x+ b

I Exponential: f(x) = eαx

I Norms. Every norm on Rd is convex.

Convexity of a norm f(x)

By the triangle inequality f(x+ y) ≤ f(x) + f(y) and
homogeneity of a norm f(ax) = |a|f(x) , a scalar:

f(λx+ (1− λ)y) ≤ f(λx) + f((1− λ)y) = λf(x) + (1− λ)f(y).

We used the triangle inequality for the inequality and homogeneity
for the equality.
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Jensen’s inequality

Lemma (Jensen’s inequality)

Let f be convex, x1, . . . ,xm ∈ dom(f), λ1, . . . , λm ∈ R+ such
that

∑m
i=1 λi = 1. Then

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi).

For m = 2, this is convexity. The proof of the general case is
Exercise 1.
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First-order characterization of convexity

Lemma ([BV04, 3.1.3])

Suppose that dom(f) is open and that f is differentiable; in
particular, the gradient (vector of partial derivatives)

∇f(x) :=
(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xd

)
exists at every point x ∈ dom(f). Then f is convex if and only if
dom(f) is convex and

f(y) ≥ f(x) +∇f(x)>(y − x) (1)

holds for all x,y ∈ dom(f).
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First-order characterization of convexity

x y

f(y)

f(x) +∇f(x)>(y − x)
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Second-order characterization of convexity
Lemma ([BV04, 3.1.4])

Suppose that dom(f) is open and that f is twice differentiable; in
particular, the Hessian (matrix of second partial derivatives)

∇2f(x) =


∂2f(x)
∂x1∂x1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xd

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2∂x2

· · · ∂2f(x)
∂x2∂xd

...
... · · · ...

∂2f(x)
∂xd∂x1

∂2f(x)
∂xd∂x2

· · · ∂2f(x)
∂xd∂xd


exists at every point x ∈ dom(f) and is symmetric. Then f is
convex if and only if dom(f) is convex, and for all x ∈ dom(f),
we have

∇2f(x) � 0 (i.e. ∇2f(x) is positive semidefinite).

(A symmetric matrix M is positive semidefinite if x>Mx ≥ 0 for all x, and

positive definite if x>Mx > 0 for all x.)
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Operations that preserve convexity

Lemma (Exercise 4)

(i) Let f1, f2, . . . , fm be convex functions, λ1, λ2, . . . , λm ∈ R+.
Then f :=

∑m
i=1 λifi is convex on dom(f) :=

⋂m
i=1 dom(fi).

(ii) Let f be a convex function with dom(f) ⊆ Rd, g : Rm → Rd

an affine function, meaning that g(x) = Ax+ b, for some
matrix A ∈ Rd×m and some vector b ∈ Rd. Then the
function f ◦ g (that maps x to f(Ax+ b)) is convex on
dom(f ◦ g) := {x ∈ Rm : g(x) ∈ dom(f)}.
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Solving Convex Optimization Problems - Provably

Definition

A local minimum of f : dom(f)→ R is a point x such that
there exists ε > 0 with

f(x) ≤ f(y) ∀y ∈ dom(f) satisfying ‖y − x‖ < ε.

Lemma

Let x? be a local minimum of a convex function
f : dom(f)→ R. Then x? is a global minimum, meaning that

f(x?) ≤ f(y) ∀y ∈ dom(f).

Proof.
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Solving Convex Optimization Problems - Provably

Lemma

Suppose that f is convex and differentiable over an open domain
dom(f). Let x ∈ dom(f). If ∇f(x) = 0, then x is a global
minimum.

Proof.

Suppose that ∇f(x) = 0. According to our Lemma on the
first-order characterization of convexity, we have
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Strictly convex functions

Definition ([BV04, 3.1.1])

A function f : dom(f)→ R is strictly convex if (i) dom(f) is
convex and (ii) for all x 6= y ∈ dom(f) and all λ ∈ (0, 1), we have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y). (2)

Lemma

Let f : dom(f)→ R be strictly convex. Then f has at most one
global minimum.
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