Optimization for Machine Learning CS-439

Lecture 2: Gradient Descent

Martin Jaggi

EPFL – github.com/epfml/OptML_course

March 2, 2018

Recap

Convexity

recap,

and short addition before we get to gradient descent...

EPFL Machine Learning and Optimization Laboratory 2/16

Existence of a minimizer

Sublevel sets: Let $f : \textbf{dom}(f) \to \mathbb{R}, \alpha \in \mathbb{R}$. The set

$$
f^{\leq \alpha} := \{ \mathbf{x} \in \mathbf{dom}(f) : f(\mathbf{x}) \leq \alpha \}
$$

is the α -sublevel set of f;

Weierstrass Theorem

Theorem

Let $f : dom(f) \to \mathbb{R}$ be a convex function, $dom(f)$ open, and suppose there is a nonempty and bounded sublevel set $f^{\leq \alpha}.$ Then f has a global minimum.

Proof.

Chapter 2

Gradient Descent

EPFL Machine Learning and Optimization Laboratory 5/16

The Algorithm

How to get near to a minimum x^* ? (Assumptions: $f:\mathbb{R}^d\to\mathbb{R}$ convex, differentiable, has a global minimum $\mathbf{x}^{\star})$ **Goal:** Find $\mathbf{x} \in \mathbb{R}^d$ such that

$$
f(\mathbf{x}) - f(\mathbf{x}^*) \le \varepsilon.
$$

Note that there can be several minima $x_1^* \neq x_2^*$ with $f(x_1^*) = f(x_2^*)$.

Iterative Algorithm:

$$
\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t),
$$

for timesteps $t = 0, 1, \ldots$, and stepsize $\gamma \geq 0$.

EPFL Machine Learning and Optimization Laboratory 6/16

Example

Vanilla analysis

How to bound $f(\mathbf{x}_t) - f(\mathbf{x}^*)$?

▶ Convexity of f, for $\mathbf{x} = \mathbf{x}_t, \mathbf{y} = \mathbf{x}^*$, gives

$$
f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \nabla f(\mathbf{x}_t)^\top (\mathbf{x}_t - \mathbf{x}^*).
$$

Apply the definition of the iteration, $\nabla f(\mathbf{x}_t) = (\mathbf{x}_t - \mathbf{x}_{t+1})/\gamma$:

$$
f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \frac{1}{\gamma} (\mathbf{x}_t - \mathbf{x}_{t+1})^\top (\mathbf{x}_t - \mathbf{x}^*).
$$

 \blacktriangleright Now we apply $2\mathbf{v}^\top\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$

$$
f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \frac{1}{2\gamma} (||\mathbf{x}_t - \mathbf{x}_{t+1}||^2 + ||\mathbf{x}_t - \mathbf{x}^*||^2 - ||\mathbf{x}_{t+1} - \mathbf{x}^*||^2)
$$

=
$$
\frac{1}{2\gamma} (\gamma^2 ||\nabla f(\mathbf{x}_t)||^2 + ||\mathbf{x}_t - \mathbf{x}^*||^2 - ||\mathbf{x}_{t+1} - \mathbf{x}^*||^2)
$$

again by the definition of gradient descent

EPFL Machine Learning and Optimization Laboratory 8/16

Vanilla analysis, cont.

sum this over steps $t = 0, \ldots, T - 1$:

$$
\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^*))
$$
\n
$$
\leq \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} (\|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \|\mathbf{x}_T - \mathbf{x}^*\|^2)
$$
\n
$$
\leq \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^*\|^2
$$

an upper bound for the average error $f(\mathbf{x}_t) - f(\mathbf{x}^\star)$, $t = 0 \dots T - 1$

- \blacktriangleright last iterate is not necessarily the best one
- \blacktriangleright stepsize is crucial

EPFL Machine Learning and Optimization Laboratory 9/16

Bounded gradients: $\mathcal{O}(1/\varepsilon^2)$ steps

Assume that all gradients of f are bounded in norm.

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable with a global minimum \mathbf{x}^\star ; furthermore, suppose that $\|\mathbf{x}_0 - \mathbf{x}^\star\| \leq R$ and $\|\nabla f(\mathbf{x})\| \leq L$ for all x. Choosing the stepsize

$$
\gamma:=\frac{R}{L\sqrt{T}},
$$

gradient descent yields

$$
\frac{1}{T}\sum_{t=0}^{T-1}f(\mathbf{x}_t)-f(\mathbf{x}^*)\leq \frac{RL}{\sqrt{T}}.
$$

Bounded gradients: $\mathcal{O}(1/\varepsilon^2)$ steps, II

Proof.

EPFL Machine Learning and Optimization Laboratory 11/16

П

Bounded gradients: $\mathcal{O}(1/\varepsilon^2)$ steps, II

Advantages:

- \blacktriangleright dimension-independent!
- \blacktriangleright holds for both average, or best iterate

In Practice:

What if we don't know R and L ?

 \rightarrow Exercise 12

Convex, but not too convex?

Definition

Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable, $L \in \mathbb{R}_+$. f is called smooth (with parameter L) if

$$
f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d.
$$

Smoothness: For any x, the graph of f is below a not-too-steep tangential paraboloid at $(\mathbf{x}, f(\mathbf{x}))$: x y $f(\mathbf{y})$ $f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x})$ $f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x}) + \frac{L}{2} \|\mathbf{x}-\mathbf{y}\|^2$

- \blacktriangleright Quadratic functions are smooth
- \triangleright Operations that preserve smoothness:

Lemma (Exercise 14)

- (i) Let f_1, f_2, \ldots, f_m be convex functions that are smooth with parameters L_1, L_2, \ldots, L_m , and let $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}_+$. Then the convex function $f := \sum_{i=1}^m \lambda_i f_i$ is smooth with parameter $\sum_{i=1}^m \lambda_i L_i.$
- (ii) Let f be convex and smooth with parameter L , and let $g(\mathbf{x}) = A \mathbf{x} + \mathbf{b}$, for $A \in \mathbb{R}^{d \times m}$ and $\mathbf{b} \in \mathbb{R}^{d}$. Then the convex function $f \circ g$ is smooth with parameter $L\|A\|^2$, where

$$
||A|| = \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||}{||\mathbf{x}||}
$$

is the 2-norm (or spectral norm) of A .

Convergence proof: See next lecture