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Recap

Convexity
recap,
and short addition before we get to gradient descent...
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Existence of a minimizer

Sublevel sets: Let f: dom(f) - R, @ € R. The set

f=¢ = {x e dom(f) : f(x) < a}

is the a-sublevel set of f;

e e
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Weierstrass Theorem

Theorem

Let f:dom(f) — R be a convex function, dom(f) open, and
suppose there is a nonempty and bounded sublevel set f<*. Then
f has a global minimum.

Proof.
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Chapter 2

Gradient Descent
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The Algorithm

How to get near to a minimum x*7

(Assumptions: f : R? — R convex, differentiable, has a global minimum x*)

Goal: Find x € R? such that

*
fx) = f(x") <e
Note that there can be several minima x7 # x5 with f(x7) = f(x3).

Iterative Algorithm:
X1 = X¢ — YV (%),

for timesteps ¢t = 0, 1,..., and stepsize v > 0.
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Vanilla analysis
How to bound f(x;) — f(x*) ?

» Convexity of f, for x = x;,y = x*, gives
Flxe) = f(x") < VF(xe) " (e = x7).
> Apply the definition of the iteration, V f(x¢) = (x¢ — X¢41)/7:

Fxe) = Fx*) < = (0 — x041) T (30 — x°).

> Now we apply 2v"w = [v[[2 + |2 — v — w]]

1
i) = f(x7) < > (e = xeqall® + e = x*[|* = fIxers —x*%)

1
> (VY f (x)I1? + [1xe — x5 [)* = [[xe1 — x*[|%)

again by the definition of gradient descent
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Vanilla analysis, cont.

sum this over steps t =0,...,T — 1:

T—1
(f(Xt) - f(X*))
t=0
. T—1 1
< S VGNP + o= (Ixo = x| = llxr — x*|?)
2 = 2y
’yT 1 1
< L 2 - o x|2
< 32 IVl + gl = x|

an upper bound for the average error f(x;) — f(x*), t=0... T —1

> l|ast iterate is not necessarily the best one

> stepsize is crucial
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Bounded gradients: O(1/c%) steps

Assume that all gradients of f are bounded in norm.
Theorem

Let f: R? — R be convex and differentiable with a global
minimum x*; furthermore, suppose that ||xo — x*|| < R and
IV f(x)|| <L for all x. Choosing the stepsize

gradient descent yields

T—

[y

fxe) = f(x7) <

| -
58

t=
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Bounded gradients: O(1/¢?) steps, Il

Proof.
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Bounded gradients: O(1/¢?) steps,

Advantages:

» dimension-independent!

» holds for both average, or best iterate

In Practice:
What if we don't know R and L?

— Exercise 12
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Smooth functions: O(1/¢) steps

Convex, but not too convex?
Definition

Let f: R? = R be convex and differentiable, L € R,.. f is called
smooth (with parameter L) if

F¥) < F6)+ 97Ty )+ 5 x - yl% vy € R
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Smooth functions: O(1/¢) steps
Smoothness: For any x, the graph of f is beI/o/w a not-too-steep
tangential paraboloid at (x, f(x)): /
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Smooth functions: O(1/¢) steps

» Quadratic functions are smooth

» Operations that preserve smoothness:

Lemma (Exercise 14)

(i) Let f1, fa,..., fm be convex functions that are smooth with
parameters L1, Lo, ..., Ly, and let \;, Ao, ..., A € Ry
Then the convex function f := " \;fi is smooth with
parameter y " | N\iL;.

(i) Let f be convex and smooth with parameter L, and let
g(x) = Ax + b, for A € R™™ and b € RZ. Then the convex

function f o g is smooth with parameter L||Al||?, where
A
41 = mae 12X]
A0 [|x|

is the 2-norm (or spectral norm) of A.

EPFL Machine Learning and Optimization Laboratory

15/16



Smooth functions: O(1/¢) steps

Convergence proof: See next lecture
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	The algorithm

