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Recap

Convexity
recap,
and short addition before we get to gradient descent...
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Existence of a minimizer

Sublevel sets: Let f : dom(f)→ R, α ∈ R. The set

f≤α := {x ∈ dom(f) : f(x) ≤ α}

is the α-sublevel set of f ;

α

f≤α f≤αf≤α
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Weierstrass Theorem

Theorem

Let f : dom(f)→ R be a convex function, dom(f) open, and
suppose there is a nonempty and bounded sublevel set f≤α. Then
f has a global minimum.

Proof.
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Chapter 2

Gradient Descent
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The Algorithm

How to get near to a minimum x??
(Assumptions: f : Rd → R convex, differentiable, has a global minimum x?)

Goal: Find x ∈ Rd such that

f(x)− f(x?) ≤ ε.

Note that there can be several minima x?
1 6= x?

2 with f(x?
1) = f(x?

2).

Iterative Algorithm:

xt+1 := xt − γ∇f(xt),

for timesteps t = 0, 1, . . . , and stepsize γ ≥ 0.
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Vanilla analysis
How to bound f(xt)− f(x?) ?

I Convexity of f , for x = xt,y = x?, gives

f(xt)− f(x?) ≤ ∇f(xt)>(xt − x?).

I Apply the definition of the iteration, ∇f(xt) = (xt − xt+1)/γ:

f(xt)− f(x?) ≤
1

γ
(xt − xt+1)

>(xt − x?).

I Now we apply 2v>w = ‖v‖2 + ‖w‖2 − ‖v −w‖2

f(xt)− f(x?) ≤
1

2γ

(
‖xt − xt+1‖2 + ‖xt − x?‖2 − ‖xt+1 − x?‖2

)
=

1

2γ

(
γ2‖∇f(xt)‖2 + ‖xt − x?‖2 − ‖xt+1 − x?‖2

)
again by the definition of gradient descent
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Vanilla analysis, cont.

sum this over steps t = 0, . . . , T − 1:

T−1∑
t=0

(
f(xt)− f(x?)

)
≤ γ

2

T−1∑
t=0

‖∇f(xt)‖2 +
1

2γ

(
‖x0 − x?‖2 − ‖xT − x?‖2

)
≤ γ

2

T−1∑
t=0

‖∇f(xt)‖2 +
1

2γ
‖x0 − x?‖2

an upper bound for the average error f(xt)− f(x?), t = 0 . . . T − 1

I last iterate is not necessarily the best one

I stepsize is crucial
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Bounded gradients: O(1/ε2) steps

Assume that all gradients of f are bounded in norm.

Theorem

Let f : Rd → R be convex and differentiable with a global
minimum x?; furthermore, suppose that ‖x0 − x?‖ ≤ R and
‖∇f(x)‖ ≤ L for all x. Choosing the stepsize

γ :=
R

L
√
T
,

gradient descent yields

1

T

T−1∑
t=0

f(xt)− f(x?) ≤
RL√
T
.
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Bounded gradients: O(1/ε2) steps, II

Proof.
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Bounded gradients: O(1/ε2) steps, II

Advantages:

I dimension-independent!

I holds for both average, or best iterate

In Practice:
What if we don’t know R and L?

→ Exercise 12
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Smooth functions: O(1/ε) steps

Convex, but not too convex?

Definition

Let f : Rd → R be convex and differentiable, L ∈ R+. f is called
smooth (with parameter L) if

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
‖x− y‖2, ∀x,y ∈ Rd.
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Smooth functions: O(1/ε) steps

Smoothness: For any x, the graph of f is below a not-too-steep
tangential paraboloid at (x, f(x)):

x y

f(y)

f(x) +∇f(x)>(y − x)

f(x) +∇f(x)>(y − x) + L
2
‖x− y‖2

EPFL Machine Learning and Optimization Laboratory 14/16



Smooth functions: O(1/ε) steps
I Quadratic functions are smooth

I Operations that preserve smoothness:

Lemma (Exercise 14)

(i) Let f1, f2, . . . , fm be convex functions that are smooth with
parameters L1, L2, . . . , Lm, and let λ1, λ2, . . . , λm ∈ R+.
Then the convex function f :=

∑m
i=1 λifi is smooth with

parameter
∑m

i=1 λiLi.

(ii) Let f be convex and smooth with parameter L, and let
g(x) = Ax+ b, for A ∈ Rd×m and b ∈ Rd. Then the convex
function f ◦ g is smooth with parameter L‖A‖2, where

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

is the 2-norm (or spectral norm) of A.
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Smooth functions: O(1/ε) steps

Convergence proof: See next lecture
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	The algorithm

