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Smooth functions: O(1/¢) steps

Theorem

Let f: R* = R be convex and differentiable with a global
minimum x*; furthermore, suppose that f is smooth with
parameter L.Choosing 1

= Za

gradient descent with arbitrary x( satisfies

(i) Function values are monotone decreasing:

Fse1) < 60) = IV FGIE, 620,

Floer) = FO) < ol — x|
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Smooth functions: O(1/¢) steps. Proof

Proof.
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Smooth functions: O(1/¢) steps

» Do we need to know L7
No. Exercise 15.
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Smooth functions: O(1/¢) steps

» Bounded gradients < Lipschitz continuity of f,
» Now: smoothness < Lipschitz continuity of Vf.

Lemma

Let f : RY — R be convex and differentiable. The following two
statements are equivalent.

(i) f is smooth with parameter L.
(i) [IVF(x) = V) < Llx = yl| for all x,y € R,
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Can we go even faster?

So far: Error decreases with 1/\/T or 1/T...

Could it decrease exponentially in 177
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Can we go even faster?

» On f(z) :=2?: Stepsize vy := % (fis L =2 - smooth)

1
Tt41 = Tt — §Vf($t) =Tt — Tt = 0,
» converged in one step!
» Same f(z) := 2% Stepsize v := 1 (fis L =4 - smooth)

1 T T
Tit1 :xt_zvf($t) Z-’Et—Et = Et,

o f(ze) = f (3) = Frad

» Exponential in ¢!
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Strong convexity: O(log(1/¢c)) steps

Not too curved and not too flat
Definition

Let f: R? - R be convex and differentiable, i € Ry, > 0. f is
called strongly convex (with parameter p) if

)2 £ + V) (y =x) + Sl - yIP. vxy € R

Lemma (Exercise 17)

If f is strongly convex with parameter y > 0, then f is strictly
convex and has a unique global minimum.
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Strong convexity: O(log(1/¢)) steps -

X Yy

A smooth and strongly convex function
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Strong convexity: O(log(1/¢c)) steps

Can we show lim;_,oo x; = x* 7
From the vanilla analysis, we know
1

Fox)—F () < o

(VY F (o) lI? + e — 12 =[x — x*[|) -
Using that f is strongly convex, we obtain

1 1%
<% (IVFGI® + I = %17 = [eaen = x*%) = 5 e =%
Can bound [|x¢41 — x*||?
“noise”:

in terms of ||x; — x*||?, along with some

¢e+1—x*|* < 27(f(X*)—f(Xt))+72IIVf(Xt)||2+(1—W)H><t—>z*sll)2
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Strong convexity: O(log(1/¢c)) steps
Theorem

Let f : R? — R be convex, differentiable, and smooth with
parameter L, and strongly convex with parameter pn > 0. Choosing

7:257

gradient descent with arbitrary x( satisfies the following two
properties.

(i) Squared distances to x* are geometrically decreasing:

-

e =2 < (1= %

)l = x| e >0,

(i)
P = 16 < 5 (1= g — 2
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Strong convexity: O(log(1/¢c)) steps
Proof.

For (i), we show that the noise in (S) disappears. From the above

“smooth” Theorem (i), we know that

f(x*) = f(xe) < fxeq1) = f(xe) < ||Vf(xt)\| )

and hence the noise can be bounded as follows:
29(£x*) = fx0)) + 221V 10
= TU6) — ) + 75 IVl
< —HIVI)IP + 25 IV )| =

So, (S) actually yields

Ixeer = %712 < (1= p)lxe = x* 2 = (1= 2 ) xe —

L
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Strong convexity: O(log(1/¢c)) steps

Proof.

The bound in (ii) follows from smoothness, using V f(x*) = 0:

Fxe) = F(x*) < VFON) T (e =) 2t — e = Z e — |2

Conclusion: To reach absolute error at most &, we only need
O(log 1) iterations, where the constant behind the big-O is

roughly L/p.
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Chapter 3

Projected Gradient Descent
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Constrained Optimization

Constrained Optimization Problem

minimize f(x)

subject to xeX

Solving Constrained
Optimization Problems

A Projected Gradient Descent

B Transform it into an
unconstrained problem
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The Algorithm

How to get near to a minimum x* over a closed convex subset
X CR%?

Projected gradient descent:

yir1 = X —yVf(x),
Xep1 = Hx(yee1) == argmin ||x — v 1]
xeX
for timesteps t = 0,1,..., and stepsize v > 0.
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Projected Gradient Descent

Idea: project onto X after every step:
Ix (y) := argmin, ey [[x — y||

Projected gradient update x;11 « Ilx [xt — 'ny(xt)]
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Properties of Projection

Fact
Let X C RY convex, x € X,y € R%. Then

(i) (x—Tx(y) ' (y —Ix(y)) < 0.
(i) Ix = Ix () + ly = Ix (3)[1* < [lx =yl
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Constrained minimization: O(1/s?) steps

Theorem

Let f: R? — R be convex and differentiable, X C R® closed and
convex, x* a minimizer of f over X; furthermore, suppose that
llxo —x*|| < R with xo € X, and that ||V f(x)|| < L for all

x € X. Choosing the constant stepsize

fy T L\/T’
projected gradient descent yields

T

=
S Flxe) — flx) <
t=0

el
S
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Constrained minimization: O(1/s?) steps

Proof.

Vanilla analysis, but in early step, replace %441 by y;11:

Foa) = f(x) < o= (PIV I + llxe = x*|7 = [lyess — %) -

(1)

1
2y
From Fact(ii) (with x = x*,y = y¢+1), we obtain
xer1 — x*[1? < llye41 — x*|%, hence we get

Flx) - f(x) < =

> (VIVF Gl + lxe = x*|* = I — x*[1%)

and follow the vanilla analysis for the remainder of the proof. O
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