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Smooth constrained minimization: O(1/¢c) steps
Theorem

Let f: R?* = R be convex and differentiable. Let X C R? be a
closed convex set, and assume that there is a minimizer x* of f
over X, furthermore, suppose that f is L-smooth over X. When

choosing the stepsize
1

7:237

projected gradient descent with xg € X satisfies:

(i) Function values are monotone decreasing:

1 L
Flxeqn) < fOa) = G IV )P+ S yeen =%l 20,

(ii)
flxr) = f(x7) <

L
gpllxo =x*II%, T>0.
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Smooth constrained minimization: O(1/¢) steps

Proof.
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Strongly convex constrained minimization:
O(log(1/¢)) steps
Theorem
Let f: R* = R be convex and differentiable. Let X C R? be a
closed and convex set and suppose that f is smooth over X with

parameter L and strongly convex over X with parameter p > 0.
Choosing

1
7 T L’
projected gradient descent with arbitrary xq satisfies
(i) )
e =2 < (1= 2) e =2, 2> 0.
(if)

P = £ < 5 (1) o =2
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Strongly convex constrained minimization:
O(log(1/¢)) steps

Proof.

Strengthen the “constrained” vanilla bound

1
> (VIVF o) lP+ e == | =2 =y ™ —x1%)

to

1
> (VIVFGeo)lIP+ e =1 = I =2 =y ™ —x1?)

using strong convexity.

Then proceed as in the unconstrained theorem.
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Projecting onto /;-balls

d
X = By(R) := {x eR:lxlh =3 Jail < R}

i=1

A

X = Bi(R)

24 facets!
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Projecting onto /;-balls

w.l.o.g.
» R=1, (*)
» v; > 0 for all 4,
> Z?:l v; > 1.

And using this,

x = Il x(v) satisfies 2; > 0 for all i and 2% | 2; = 1.
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Projecting onto /;-balls

Corollary

Under our assumption (*),

Ix(v) = argmin ||x — v||?,
XEAy

where

d
Ay = {x e RY: Zx, =1,x; > OW}
i=1
is the standard simplex.

Also, w.l.0.g. assume that v is ordered decreasingly,
V] 2> Vg 2 2> g
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Projecting onto /;-balls
Lemma

Let x* := argmin, ¢, ||x — v||%, and v ordered decreasingly.
There exists (a unique) index p € {1,...,d} s.t.

x; > 0, i<p,
xy 0, i>p.

Proof.
Optimality criterion for constrained optimization:
Vdy(x*) T (x —x*) =2(x* —=v) (x = x*) >0, Vxe Ay
3 a positive entry in x* (because Z‘ij:l zf =1).
Why not 27 = 0 and x7,; > 07 If so, we could decrease x7 | by €
and increase x7 to € to obtain x € Ay s.t.
(5 —v) T (x=x") = (0—vi)e— (k1 —vit1)e = £(vigs — v —akyy) <O,
SN——

_ . . <0 >0
contradicting the optimality. [
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Projecting onto /;-balls
Can say more about x*:
Lemma

With p as in the above Lemma, and v ordered decreasingly, we

have
T =v;— 0, 1<p,
where 1,2
®p == *(Z’Ui - 1)
PN
Proof.

Assume there is 4,7 < p with 27 —v; < 27 — v;. As before, we
could decrease ¥ > 0 by ¢ and increase z} by € to get x € Ag s.t.

(") () = (@ —vi)e—(af—vy)e = e(af = v0) — (] = ©;) <O,

<0
again contradicting optimality of x*. O
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Projecting onto /;-balls

Summary: have d candidates for x*, namely
x*(p) == (v1 — ©Op,...,vp, —0p,0,...,0), ped{l,...,d},

Need to find the right one. In order for candidate x*(p) to comply
with our first Lemma, we must have

vy —60), >0,

and this actually ensures x*(p); > 0 for all i < p (because v is
ordered) and therefore x*(p) € Ay.

But there could still be several choices for p. Among them, we
simply pick the one for which x*(p) minimizes the distance to v.

In time O(dlogd), by first sorting v and checking incrementally.

EPFL Machine Learning and Optimization Laboratory



Projecting onto /;-balls

Theorem

letveRY Re Ry, X = By(R) the ¢1-ball around 0 of
radius R. The projection

Iy (v) = argmin ||x — v||?
xeX

of v onto Bi(R) can be computed in time O(dlogd).

This can be improved to time O(d) by avoiding sorting.
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Section 3.6

Proximal Gradient Descent
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Composite optimization problems

Consider objective functions composed as

f(x) == g(x) + h(x)

where g is a “nice” function, where as h is a “simple” additional
term, which however doesn'’t satisfy the assumptions of niceness
which we used in the convergence analysis so far.

In particular, an important case is when h is not differentiable.

EPFL Machine Learning and Optimization Laboratory 14/18



Idea

The classical gradient step for minimizing g:
. - 1 )
i1 = axgmin g(x) + Vaoe) (v = x0) + 5=y =
y
For the stepsize v := % it exactly minimizes the local quadratic model of g at

our current iterate x;, formed by the smoothness property with parameter L.

Now for f = g + h, keep the same for g, and add h unmodified.

. 1
X1 =argmin g(x) + Vg(x) ' (y —x¢) + glly —x|* + h(y)
Yy

. 1
= argmin 2—||Y — (x¢ —YVg(x))|I* + h(y)
y i

the proximal gradient descent update.
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The proximal gradient descent algorithm
An iteration of proximal gradient descent is defined as
Xt+1 1= Proxy ., (x¢ — YVg(xt)) .

where the proximal mapping for a given function h, and parameter
~ > 0 is defined as

. 1
prox;, ,(z) = avgmin { |}y — 2 + h(y) } -
y Y

The update step can be equivalently written as
X1 = Xt — va(xt)

for Gp, 4(x) := %(x — prox, (x — 7Vg(x))> being the so called
generalized gradient of f.
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A generalization of gradient descent?

» h = 0: recover gradient descent

> h = ix: recover projected gradient descent!

Given a closed convex set X, the indicator function of the set
X is given as the convex function

inRd*)RU+OO

{0 if x € X,
X = tx(x) =

+00  otherwise.

Proximal mapping becomes

. 1 .
prox; , (z) := argmin { 5~ |ly—z|*+ex(y) } = argmin |ly—z?
y Y yeX
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Convergence in O(1/¢) steps

Same as vanilla case for smooth functions, but now for any h for

which we can compute the proximal mapping.
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