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Smooth constrained minimization: O(1/ε) steps
Theorem

Let f : Rd → R be convex and differentiable. Let X ⊆ Rd be a
closed convex set, and assume that there is a minimizer x? of f
over X; furthermore, suppose that f is L-smooth over X. When
choosing the stepsize

γ :=
1

L
,

projected gradient descent with x0 ∈ X satisfies:

(i) Function values are monotone decreasing:

f(xt+1) ≤ f(xt)−
1

2L
‖∇f(xt)‖2 +

L

2
‖yt+1−xt+1‖2, t ≥ 0.

(ii)

f(xT )− f(x?) ≤ L

2T
‖x0 − x?‖2, T > 0.
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Smooth constrained minimization: O(1/ε) steps

Proof.
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Strongly convex constrained minimization:
O(log(1/ε)) steps

Theorem

Let f : Rd → R be convex and differentiable. Let X ⊆ Rd be a
closed and convex set and suppose that f is smooth over X with
parameter L and strongly convex over X with parameter µ > 0.
Choosing

γ :=
1

L
,

projected gradient descent with arbitrary x0 satisfies

(i)

‖xt+1 − x?‖2 ≤
(

1− µ

L

)
‖xt − x?‖2, t ≥ 0.

(ii)

f(xt)− f(x?) ≤ L

2

(
1− µ

L

)t
‖x0 − x?‖2.
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Strongly convex constrained minimization:
O(log(1/ε)) steps

Proof.

Strengthen the “constrained” vanilla bound

1

2γ

(
γ2‖∇f(xt)‖2+‖xt−x?‖2−‖x+−x?‖2 − ‖y+−x+‖2

)
to

1

2γ

(
γ2‖∇f(xt)‖2+‖xt−x?‖2−‖x+−x?‖2 − ‖y+−x+‖2

)
−µ

2
‖xt − x?‖2

using strong convexity.

Then proceed as in the unconstrained theorem.
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Projecting onto `1-balls

X = B1(R) :=
{
x ∈ Rd : ‖x‖1 =

d∑
i=1

|xi| ≤ R
}

X = B1(R)
v

0 R

ΠX(v)

2d facets!
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Projecting onto `1-balls

w.l.o.g.

I R = 1, (*)

I vi ≥ 0 for all i,

I
∑d

i=1 vi > 1.

And using this,

x = ΠX(v) satisfies xi ≥ 0 for all i and
∑d

i=1 xi = 1.
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Projecting onto `1-balls

Corollary

Under our assumption (*),

ΠX(v) = argmin
x∈∆d

‖x− v‖2,

where

∆d :=
{
x ∈ Rd :

d∑
i=1

xi = 1, xi ≥ 0 ∀i
}

is the standard simplex.

Also, w.l.o.g. assume that v is ordered decreasingly,
v1 ≥ v2 ≥ · · · ≥ vd.
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Projecting onto `1-balls

Lemma

Let x? := argminx∈∆d
‖x− v‖2, and v ordered decreasingly.

There exists (a unique) index p ∈ {1, . . . , d} s.t.

x?i > 0, i ≤ p,
x?i = 0, i > p.

Proof.

Optimality criterion for constrained optimization:

∇dv(x?)>(x− x?) = 2(x? − v)>(x− x?) ≥ 0, ∀x ∈ ∆d.

∃ a positive entry in x? (because
∑d

i=1 x
?
i = 1).

Why not x?i = 0 and x?i+1 > 0? If so, we could decrease x?i+1 by ε
and increase x?i to ε to obtain x ∈ ∆d s.t.

(x?−v)>(x−x?) = (0−vi)ε−(x?i+1−vi+1)ε = ε(vi+1 − vi︸ ︷︷ ︸
≤0

−x?i+1︸︷︷︸
>0

) < 0,

contradicting the optimality.
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Projecting onto `1-balls

Can say more about x?:

Lemma

With p as in the above Lemma, and v ordered decreasingly, we
have

x?i = vi −Θp, i ≤ p,
where

Θp =
1

p

( p∑
i=1

vi − 1
)
.

Proof.

Assume there is i, j ≤ p with x?i − vi < x?j − vj . As before, we
could decrease x?j > 0 by ε and increase x?i by ε to get x ∈ ∆d s.t.

(x?−v)>(x−x?) = (x?i−vi)ε−(x?j−vj)ε = ε((x?i − vi)− (x?j − vj)︸ ︷︷ ︸
<0

) < 0,

again contradicting optimality of x?.
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Projecting onto `1-balls

Summary: have d candidates for x?, namely

x?(p) := (v1 −Θp, . . . , vp −Θp, 0, . . . , 0), p ∈ {1, . . . , d},

Need to find the right one. In order for candidate x?(p) to comply
with our first Lemma, we must have

vp −Θp > 0,

and this actually ensures x?(p)i > 0 for all i ≤ p (because v is
ordered) and therefore x?(p) ∈ ∆d.

But there could still be several choices for p. Among them, we
simply pick the one for which x?(p) minimizes the distance to v.

In time O(d log d), by first sorting v and checking incrementally.
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Projecting onto `1-balls

Theorem

Let v ∈ Rd, R ∈ R+, X = B1(R) the `1-ball around 0 of
radius R. The projection

ΠX(v) = argmin
x∈X

‖x− v‖2

of v onto B1(R) can be computed in time O(d log d).

This can be improved to time O(d) by avoiding sorting.
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Section 3.6

Proximal Gradient Descent
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Composite optimization problems

Consider objective functions composed as

f(x) := g(x) + h(x)

where g is a “nice” function, where as h is a “simple” additional
term, which however doesn’t satisfy the assumptions of niceness
which we used in the convergence analysis so far.

In particular, an important case is when h is not differentiable.
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Idea

The classical gradient step for minimizing g:

xt+1 = argmin
y

g(xt) +∇g(xt)
>(y − xt) +

1

2γ
‖y − xt‖2 .

For the stepsize γ := 1
L

it exactly minimizes the local quadratic model of g at

our current iterate xt, formed by the smoothness property with parameter L.

Now for f = g + h, keep the same for g, and add h unmodified.

xt+1 := argmin
y

g(xt) +∇g(xt)
>(y − xt) +

1

2γ
‖y − xt‖2 + h(y)

= argmin
y

1

2γ
‖y − (xt − γ∇g(xt))‖2 + h(y) ,

the proximal gradient descent update.
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The proximal gradient descent algorithm

An iteration of proximal gradient descent is defined as

xt+1 := proxh,γ(xt − γ∇g(xt)) .

where the proximal mapping for a given function h, and parameter
γ > 0 is defined as

proxh,γ(z) := argmin
y

{ 1

2γ
‖y − z‖2 + h(y)

}
.

The update step can be equivalently written as

xt+1 = xt − γGγ(xt)

for Gh,γ(x) := 1
γ

(
x− proxh,γ(x− γ∇g(x))

)
being the so called

generalized gradient of f .
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A generalization of gradient descent?

I h ≡ 0: recover gradient descent

I h ≡ ιX : recover projected gradient descent!

Given a closed convex set X, the indicator function of the set
X is given as the convex function

ιX : Rd → R ∪+∞

x 7→ ιX(x) :=

{
0 if x ∈ X,
+∞ otherwise.

Proximal mapping becomes

proxh,γ(z) := argmin
y

{ 1

2γ
‖y−z‖2+ιX(y)

}
= argmin

y∈X
‖y−z‖2
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Convergence in O(1/ε) steps

Same as vanilla case for smooth functions, but now for any h for

which we can compute the proximal mapping.
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