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Chapter 4

Subgradient Descent
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Subgradients

What if f is not di↵erentiable?

Definition

g 2 Rd
is a subgradient of f at x if

f(y) � f(x) + g>(y � x) for all y 2 dom(f)

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) � f(x) + gT (y � x) for all y

(�� (g,�1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x � x1)

f(x2) + gT
2 (x � x2)

f(x2) + gT
3 (x � x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1

Prof. S. Boyd, EE392o, Stanford University 2

And: @f(x) ✓ Rd
is the set of subgradients of f at x.
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What are subgradients good for?

Convexity

Lemma (Exercise 23)

A function f : dom(f) ! R is convex if and only if dom(f) is
convex and @f(x) 6= ; for all x 2 dom(f).

Lipschitz Continuity

Lemma (Exercise 24)

Let f : Rd
! R be convex, B 2 R+. Then the following two

statements are equivalent.

(i) kgk  B for all x 2 Rd and all g 2 @f(x).

(ii) |f(x) � f(y)|  Bkx � yk for all x,y 2 Rd.
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What are subgradients good for?

Subgradient Optimality Condition. Subgradients also allow us

to describe cases of optimality for functions which are not

necessarily di↵erentiable (and not necessarily convex)

Lemma

Suppose that f is any function over dom(f), and x 2 dom(f). If
0 2 @f(x), then x is a global minimum.

Proof.
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The subgradient descent algorithm

An iteration of subgradient descent is defined as

Let gt 2 @f(xt)

xt+1 := xt � �gt.

EPFL Machine Learning and Optimization Laboratory 6/22



Bounded subgradients: O(1/"2) steps
The following result gives the convergence for Subgradient

Descent. It is identical to Theorem 2.1, up to relaxing the

requirement of di↵erentiability.

Theorem

Let f : Rd
! R be convex and B-Lipschitz continuous on Rd with

a global minimum x?; furthermore, suppose that kx0 � x?
k  R.

Choosing the constant stepsize

� :=
R

B
p

T
,

subgradient descent yields

1

T

T�1X

t=0

f(xt) � f(x?) 
RB
p

T
.
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Bounded subgradients: O(1/"2) steps

Proof.
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Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural

question to ask is if these rates are best possible or not.

Surprisingly, the rate can indeed not be improved in general.

Theorem (Nesterov)

For any T  d � 1 and starting point x0, there is a function f in
the problem class of B-Lipschitz functions over Rd, such that any
(sub)gradient method has an objective error at least

f(xT ) � f(x?) �
RB

2(1 +
p

T + 1)
.

EPFL Machine Learning and Optimization Laboratory 9/22



Chapter 5

Stochastic Gradient Descent
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Sum structured objective functions

Consider sum structured objective functions:

f(x) :=
1

n

nX

i=1

fi(x).

Here fi is typically the cost function of the i-th datapoint, taken

from a training set of n elements in total.
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The SGD algorithm

An iteration of stochastic gradient descent (SGD) is defined as

sample i 2 [n] uniformly at random

xt+1 := xt � �trfi(xt).

The vector gt := rfi(xt) is called a stochastic gradient.
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Unbiasedness of a stochastic gradient

Why uniform sampling?

In expectation over the random choice of i, gt does coincide with

the full gradient of f :

E
⇥
gt

��xt
⇤

= rf(xt).

I gt is an unbiased stochastic gradient.

Why SGD?

n times cheaper!
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Stochastic vanilla analysis

Idea: follow the vanilla analysis with rf(xt) replaced by gt...

f(xt) � f(x?)
NO!!!

 g>
t (xt � x?).

but

g>
t (xt � x?) =

1

�
(xt � xt+1)

>(xt � x?).

=
1

2�

�
kxt � xt+1k

2 + kxt � x?
k
2
� kxt+1 � x?

k
2
�

=
1

2�

�
�2

kgtk
2 + kxt � x?

k
2
� kxt+1 � x?

k
2
�
,

using the definition SGD again. Finally, the telescoping sum:

T�1X

t=0

⇣
g>
t (xt � x?)

⌘


�

2

T�1X

t=0

kgtk
2 +

1

2�
kx0 � x?

k
2.
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Bounded stochastic gradients: O(1/"2) steps

Classic GD: For vanilla analysis, we assumed that

krf(x)k2  B2
GD

for all x 2 Rd
, where BGD was a constant. So

for sum-objective:

���
1

n

X

i

rfi(x)
���
2

 B2
GD 8x

SGD: Assuming same for the expected squared norms of our

stochastic gradients, now called B2
SGD

.

1

n

X

i

��rfi(x)
��2  B2

SGD 8x

I get same convergence result, now for expected objective f ...
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Bounded stochastic gradients: O(1/"2) steps

Theorem

Let f : Rd
! R be convex and di↵erentiable, x? a global

minimum; furthermore, suppose that kx0 � x?
k  R, and that

E
⇥
kgtk

2
⇤

 B2 for all t. Choosing the constant stepsize

� :=
R

B
p

T

stochastic gradient descent yields

1

T

T�1X

t=0

E
⇥
f(xt)

⇤
� f(x?) 

RB
p

T
.
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Bounded stochastic gradients: O(1/"2) steps

Proof. Using convexity and unbiasedness of gt, we compute

E
⇥
f(xt)

⇤
� f(x?) = E

⇥
f(xt) � f(x?)

⇤

 E
⇥
rf(xt)

>(xt � x?)
⇤

= E
⇥
E
⇥
gt

��xt
⇤>

(xt � x?)
⇤

= E
⇥
E
⇥
g>
t (xt � x?)

��xt
⇤⇤

= E
⇥
g>
t (xt � x?)

⇤
,

where the second-to-last step uses linearity of (conditional)

expectations, while the last step is known as the tower rule; see

Exercise 25.
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Bounded stochastic gradients: O(1/"2) steps

Now we can again use linearity of expectation and then ( ). We get

1

T

T�1X

t=0

E
⇥
f(xt)

⇤
� f(x?) 

1

T
E
⇥ T�1X

t=0

g>
t (xt � x?)

⇤

=
1

T
E
⇥�
2

T�1X

t=0

kgtk
2 +

1

2�
kx0 � x?

k
2
⇤

=
1

T

 
�

2

T�1X

t=0

E
⇥
kgtk

2
⇤
+

1

2�
kx0 � x?

k
2

!


RB
p

T
,

after plugging in our value of � and the assumption on E
⇥
kgtk

2
⇤

and kx0 � x?
k.
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