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Stochastic Subgradient Descent

For problems which are not necessarily differentiable, we modify
SGD to use a subgradient of f; in each iteration. The update of
stochastic subgradient descent is given by

sample ¢ € [n] uniformly at random
let g, € 8fz(xt)

X¢+1 1= Xt — V8-

In other words, we are using an unbiased estimate of a subgradient
at each step, E[gt|xt] € 0f(xy).

Convergence in O(1/¢?), by using the subgradient property at the
beginning of the proof, where convexity was applied.
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Constrained optimization

For constrained optimization, our theorem for the SGD
convergence in O(1/e?) steps directly extends to constrained
problems as well.

After every step of SGD, projection back to X is applied as usual.

The resulting algorithm is called projected SGD.
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Strong convexity: O(1/¢c) steps

Strengthen the above SGD analysis? Additional assumption of
strong convexity of the objective f. No constant stepsize v, but
instead use time-varying stepsize ~; decreasing over the time ¢.

Theorem

Let f : RY — R be differentiable and strongly convex with
parameter ;i > 0; let x* be the unique global minimum of f, and
E|||g:||?] < B? for all x. Choosing the decreasing stepsize

2

T )

SGD yields

T 2
E[f<T(T2+ ) ;t : xt> - f(x*)} < M(;BJr T
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Strong convexity: O(1/¢c) steps
Proof. Step def., and 2v'w = ||v||? + ||w|? — ||v — w||? gives

%41 — x*||° =[x — nege — x*|?

= llxe = x*|* + 77 llgell” — 2/ (xe —x*)

Taking conditional expectation on both sides, and using
unbiasedness of the stochastic gradient g;, we get

B[ [xer1 — x*|* | x]

=t —x*|* + PE[lgell* | 3] = 2%V f(xe) " (x¢ — x7)

Strong convexity with y = x*, x = x; yields

V) (e = %) = Flxe) = FO) + 5 e = x|
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Strong convexity: O(1/¢c) steps
combining the above two, we have
B xei1 - x| xi]
< e =x*[1? +A7E | llgel* | xe] — 290 (£ 6e0) =) + 5 =)
Rearranging and again taking expectation over the randomness of

now the entire sequence of steps 0,1,...,¢, as well as using
E[Hgt\lz] < B?, we have

2y [f (x¢) — f(x7)]
< 2B+ (1= p) B[ xe—x*|*] = B[ |xpe1—x|*]

E[f(x:) — f(x")]

By (v —m) v
< Bty O 2 gt 2] = 2B e ]
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Strong convexity: O(1/¢c) steps

Now using the stepsize v := ﬁ and multiplying the above

inequality by ¢ on both the sides,

B[ f(x¢)— f(x")]
< B72t + E(t(t - DE[[x —x*HZ] —tt+DE[||x —X*||2]>
< Iu(t+ 1) 4 t t+1

2
< 2 (1= B[ xe = 1] = (e + DEL s —x°|])

Summing from ¢t = 1,...,T and telescoping,

T 2
>t B[fx) — £)] <+ 5 (0= T+ DE[ s — 7))
t=1

s

T op
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Strong convexity: O(1/¢c) steps

Finally, using Jensen's inequality (since T(T2+1) Z?zl t=1):

2 T 2 T
f(m;t'xt> —f(X ) < mZt(f(Xt) _f(X ))
therefore

T 2
E[f<T(T2+ ) ;t : x,g) - f(x*)} < u(;BJr D -
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Mini-batch SGD

Instead of using a single element f;, use an average of several of
them:
1
5, 7} : J
gt m p g

Extreme cases:
m =1 < SGD as originally defined
m = n < full gradient descent

Benefit: Gradient computation can be naively parallelized
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Mini-batch SGD

Variance Intuition: Taking an average of many independent
random variables reduces the variance. So for larger size of the
mini-batch m, g; will be closer to the true gradient, in expectation:

el sl -] e - v

B[l - V1G]
32
~B Il ?) - 19/ <

m .

Using a modification of the SGD analysis, can use this quantity to
relate convergence rate to the rate of full gradient descent.
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Chapter 6

Newton’s method
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1-dimensional case: Newton-Raphson method

Goal: finding a zero of differentiable f : R — R.
Method:

Flae) + fl(a)(@ —k
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Example: Finding the square root

Set f(x) := 22 — R, run Newton-Raphson:

7 — R 1< R>
Ti41 = T — =—|xe+— ).

2$t 2 Tt

Assume we're already close: 2; — VR < 1/2 (See Exercise 26).
Then the error goes to 0 quadratically (technical: assume VR > 1/2),

2T

s VR (r0-VR) < (3)

» Only O(log log(l/e)) steps needed!
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Newton’s method for optimization

1-dimensional case: Find a global minimum z* of a differentiable
convex function f: R — R.

Can equivalently search for a zero of the derivative f’: Apply the
Newton-Raphson method to f’. Update step:

T4l = Tt — f,(xt) =Ty — f”(xt)ilf/(xt)

f/l(xt)

(needs f twice differentiable)

d-dimensional case: Newton's method for minimizing a convex
function f : R* — R:

Xi+1 = X¢ — VQf(Xt)71Vf(Xt)
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Convergence in one step on quadratics

Lemma
On (nondegenerate) quadratics, with any starting point xo € R,
Newton's method yields x; = x*.

A nondegenerate quadratic function is a function of the form

1
f(x) = §XTMX —q'x+e,

where M € R%*? is an invertible symmetric matrix, q € R% ¢ € R.
Here let x* = M ~'q be the unique solution of V f(x) = 0.

Proof.
We have Vf(x) = Mx — q (this implies x* = M~!q) and
V2f(x) = M. Hence,

xo — V?f(x0) 'V f(x0) =x0 — M~ '(Mxo —q) = M~ 'q=x".
O

EPFL Machine Learning and Optimization Laboratory 15/15



