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Affine Invariance

Newton’s method is affine invariant
(invariant under any invertible affine transformation):

Lemma (Exercise 27)

Let f : Rd → R be twice differentiable, A ∈ Rd×d an invertible
matrix, b ∈ Rd. Let g : Rd → R be the (bijective) affine function
g(y) = Ay + b,y ∈ Rd. Finally, let Nh : Rd → Rd denote the
Newton step for function h, i.e.

Nh(x) := x−∇2h(x)−1∇h(x),

whenever this is defined. Then we have Nf◦g = g−1 ◦Nf ◦ g.
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Affine Invariance
Newton step for f ◦ g on yt: can transform yt to xt = g(yt),
perform the Newton step for f on x and transform the result xt+1

back to yt+1 = g−1(xt+1). I.e., the following diagram commutes:

yt yt+1

xt xt+1

Nf◦g

Nf

g g−1

Hence, while gradient descent suffers if the coordinates are at very
different scales, Newton’s method doesn’t.
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Affine Invariance

Invariance to scaling of the input problem
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Minimizing the second-order Taylor approximation

Alternative interpretation of Newton’s method:
Each step minimizes the local second-order Taylor approximation.

Lemma (Exercise 30)

Let f be convex and twice differentiable at xt ∈ dom(f), with
∇2f(xt) � 0 being invertible. The vector xt+1 resulting from the
Netwon step satisfies

xt+1 = argmin
x∈Rd

f(xt)+∇f(xt)
>(x−xt)+

1

2
(x−xt)

>∇2f(xt)(x−xt).
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Once you’re close, you’re there. . .
Theorem
Let f : dom(f)→ R be convex with a unique global minimum x?.
Suppose there is an open ball X ⊆ dom(f) with center x?, s.t.

(i) Bounded inverse Hessians: There exists a real number µ > 0
such that ‖∇2f(x)−1‖ ≤ 1

µ
, ∀x ∈ X.

(ii) Lipschitz continuous Hessians: There exists a real number
L > 0 such that

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖ ∀x,y ∈ X.

Matrix norm is spectral norm. Note: (i) ⇒ Hessian invertible at all x ∈ X.

Then, for xt ∈ X and xt+1 resulting from the Newton step, we
have

‖xt+1 − x?‖ ≤ L

2µ
‖xt − x?‖2.
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Super-exponentially fast?

Starting close to the global minimum, we will reach distance at
most ε to the minimum within O

(
log log(1/ε)

)
steps.

Corollary (Exercise 28)

With the assumptions and terminology of the above theorem, and
if

‖x0 − x?‖ < µ

L
,

then Newton’s method yields

‖xT − x?‖ < 2µ

L

(
1

2

)2T

, T ≥ 0.
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Proof of convergence theorem

Lemma (Exercise 29)

Let f be twice differentiable over a convex domain dom(f),
x,y ∈ dom(f). Then∫ 1

0
∇2f(x + t(y − x))(y − x)dt = ∇f(y)−∇f(x).

Proof of Thm. We abbreviate H := ∇2f , x = xt,x
′ = xt+1.

Subtracting x? from both sides of the step definition:

x′ − x? = x− x? −H(x)−1∇f(x)

= x− x? +H(x)−1(∇f(x?)−∇f(x))

= x− x? +H(x)−1
∫ 1

0
H(x + t(x? − x))(x? − x)dt,

using the previous Lemma.
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Proof of convergence theorem, II

With

x− x? = H(x)−1H(x)(x− x?) = H(x)−1
∫ 1

0
−H(x)(x? − x)dt,

we further get

x′ − x? = H(x)−1
∫ 1

0

(
H(x + t(x? − x))−H(x)

)
(x? − x)dt.

Taking norms, we have

‖x′−x?‖ ≤ ‖H(x)−1‖·
∥∥∥∥∫ 1

0

(
H(x + t(x? − x))−H(x)

)
(x? − x)dt

∥∥∥∥ ,
because ‖Ay‖ ≤ ‖A‖ · ‖y‖ for any A,y (by def. of spectral norm).
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Proof of convergence theorem, III
Also, ∥∥∥∥∫ 1

0
g(t)dt

∥∥∥∥ ≤ ∫ 1

0
‖g(t)‖dt

for any vector-valued function g (Exercise 32) , so we can bound

‖x′ − x?‖ ≤ ‖H(x)−1‖
∫ 1

0

∥∥(H(x + t(x?−x))−H(x)
)
(x?−x)

∥∥dt
≤ ‖H(x)−1‖

∫ 1

0

∥∥H(x + t(x?−x))−H(x)
∥∥ · ‖x?−x‖dt

≤ ‖H(x)−1‖ · ‖x?−x‖
∫ 1

0

∥∥H(x + t(x?−x))−H(x)
∥∥dt.

We can now use the properties (i) and (ii) (bounded inverse
Hessians, Lipschitz continuous Hessians) to conclude that

‖x′−x?‖ ≤ 1

µ
‖(x?−x)‖

∫ 1

0
L‖t(x?−x)‖dt =

L

µ
‖(x?−x)‖2

∫ 1

0
tdt︸ ︷︷ ︸

1/2

.
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Strong convexity?

One way to ensure bounded inverse Hessians is to require strong
convexity over X.

Lemma (Exercise 33)

Let f : dom(f)→ R be twice differentiable and strongly convex
with parameter µ over an open convex subset X ⊆ dom(f)
meaning that

f(y) ≥ f(x) +∇f(x)>(y − x) +
µ

2
‖x− y‖2, ∀x,y ∈ X.

Then ∇2f(x) is invertible and ‖∇2f(x)−1‖ ≤ 1/µ for all x ∈ X,
where ‖ · ‖ is the spectral norm.
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Chapter 7

Quasi-Newton Methods
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Downside of Newton’s method

Computational bottleneck in each step:

I compute and invert the Hessian matrix.

Matrix has size d× d, taking up to O(d3) time to invert
— or to solve the linear system ∇2f(xt)∆x = −∇f(xt) for ∆x.
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The secant method

Back to 1-dim.
Another iterative methods for finding zeros?

Newton-Raphson step

xt+1 := xt −
f(xt)

f ′(xt)
,

Lazy: use finite difference approximation

f ′(xt) ≈
f(xt)− f(xt−1)

xt − xt−1
.

(for |xt − xt−1| small)

Obtain the secant method:

xt+1 := xt − f(xt)
xt − xt−1

f(xt)− f(xt−1)
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The secant method II

xt xt+1

f(x)

xt−1

Figure: One step of the secant method
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The secant method III

Why? now have a derivative-free version of Newton’s method.

Secant method for optimization: Can we also optimize a
differentiable univariate function f? — Yes, apply the secant
method to f ′

xt+1 := xt − f ′(xt)
xt − xt−1

f ′(xt)− f ′(xt−1)

I a second-derivative-free version of Newton for optimization.

Can we generalize this to higher dimensions to obtain a
Hessian-free version of Newton’s method on Rd?
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The secant condition
Applying finite difference approximation to f ′′ (still 1-dim),

Ht :=
f ′(xt)− f ′(xt−1)

xt − xt−1
≈ f ′′(xt),

⇔
f ′(xt)− f ′(xt−1) = Ht(xt − xt−1)

the secant condition.

I Newton’s method: xt+1 := xt − f ′′(xt)−1f ′(xt)
I Secant method: xt+1 := xt −H−1t f ′(xt)

In higher dimensions: Let Ht ∈ Rd×d be a symmetric matrix
satisfying the d-dimensional secant condition

∇f(xt)−∇f(xt−1) = Ht(xt − xt−1).

The Newton step then becomes

xt+1 := xt −H−1t ∇f(xt). (QN)
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Quasi-Newton methods

If f is twice differentiable, join the secant condition along with the
first-order Taylor approximation of ∇f(x):

∇f(xt)−∇f(xt−1) = Ht(xt − xt−1) ≈ ∇2f(xt)(xt − xt−1),

⇒ (QN) approximates Newton’s method.

Quasi-Newton method: Whenever (QN) is used with a
symmetric matrix satisfying the secant condition.

I How to find good H−1t matrices?
BFGS, L-BFGS, etc.

I Newton’s method is a Quasi-Newton method if and only if f
is a nondegenerate quadratic function (Exercise 35). Hence,
Quasi-Newton methods do not generalize Newton’s method
but form a family of related algorithms.
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