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Affine Invariance

Newton's method is affine invariant
(invariant under any invertible affine transformation):

Lemma (Exercise 27)

Let f: R?% — R be twice differentiable, A € R an invertible
matrix, b € R%. Let g: R — R be the (bijective) affine function
g(y) = Ay + b,y € R?. Finally, let Nj, : R* — R? denote the
Newton step for function h, i.e.

Np(x) :=x — V2h(x) "1 Vh(x),

whenever this is defined. Then we have Njo; =g 1o Njog.
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Affine Invariance
Newton step for f o g on y;: can transform y; to x; = g(y¢),
perform the Newton step for f on x and transform the result x;y1
back to y;11 = g ' (x¢+1). le., the following diagram commutes:

_>
Xt X1

Ny

Hence, while gradient descent suffers if the coordinates are at very
different scales, Newton's method doesn't.
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Affine Invariance

Invariance to scaling of the input problem
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Minimizing the second-order Taylor approximation

Alternative interpretation of Newton's method:
Each step minimizes the local second-order Taylor approximation.

Lemma (Exercise 30)

Let f be convex and twice differentiable at x, € dom(f), with
V2f(x;) = 0 being invertible. The vector x;,1 resulting from the
Netwon step satisfies

X1 = argmin f(xt)Jer(xt)T(xfxt)qL%(Xfxt)TVQf(xt)(fot).
x€R4
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Once you're close, you're there. ..

Theorem

Let f : dom(f) — R be convex with a unique global minimum x*.

Suppose there is an open ball X C dom(f) with center x*, s.t.

(i) Bounded inverse Hessians: There exists a real number > 0
h th 1
UL 1) < =, Wx € X
7
(ii) Lipschitz continuous Hessians: There exists a real number
L > 0 such that
IV2f(x) = VZFW)Il < Lllx —y| ¥vx,y € X.

Matrix norm is spectral norm. Note: (i) = Hessian invertible at all x € X.

Then, for x;, € X and x4 resulting from the Newton step, we
have

L
[xe41 = x| < 2%~ x|,
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Super-exponentially fast?

Starting close to the global minimum, we will reach distance at
most € to the minimum within O(loglog(1/¢)) steps.

Corollary (Exercise 28)

With the assumptions and terminology of the above theorem, and
if

I
o — 7| < £,
then Newton's method yields
2T

2 1
|xr — x*|| < f,u <2> , T>0.
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Proof of convergence theorem

Lemma (Exercise 29)

Let f be twice differentiable over a convex domain dom(f),
x,y € dom(f). Then

1
/0 V2f(x + tly — x))(y — x)dt = Vf(y) — V/(x).

Proof of Thm. We abbreviate H := V?f, x = x4, X’ = Xy41.
Subtracting x* from both sides of the step definition:

X —x* = x—x*—Hx) " 'Vf(x)
= x—x"+ Hx) " (Vf(x") - Vf(x))

1
= x—x"+H(x)! /0 H(x 4+ t(x* — x))(x* — x)dt,

using the previous Lemma.
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Proof of convergence theorem, Il

With
x—x*=H(x)'H(x)(x —x*) = Hx)! /01 —H(x)(x* — x)dt,
we further get

X' — x* = H(x)™" /0 (Hx + t(x — x)) — H(0) (€ — %)t
Taking norms, we have

)

1
x| < 60| [ (e e = x0) = 00 ot = g

because ||Ay|| < ||A]l - ||y|| for any A,y (by def. of spectral norm).
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Proof of convergence theorem, llI

Also,
dtH / L&)l

for any vector-valued functlon g (Exercise 32) , so we can bound

I < G0~ [ (O o7 0) ~ HO9) o
1

< HG [ G e =) = HG0)| - e =

< GO~ - —x] [ [H e+ 1t )  H 9

We can now use the properties (i) and (ii) (bounded inverse
Hessians, Lipschitz continuous Hessians) to conclude that

0
1/2

1 1 L 1
=) < Sl =) / Dl =)t = x| / bt
0 —

O
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Strong convexity?

One way to ensure bounded inverse Hessians is to require strong
convexity over X.

Lemma (Exercise 33)

Let f: dom(f) — R be twice differentiable and strongly convex
with parameter 11 over an open convex subset X C dom(f)
meaning that

)2 [0 + V)T (y =) + Slx -y’ vxyexX.

Then V2 f(x) is invertible and ||V2f(x)7!|| < 1/u for all x € X,
where || - || is the spectral norm.
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Chapter 7

Quasi-Newton Methods
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Downside of Newton’s method

Computational bottleneck in each step:

» compute and invert the Hessian matrix.

Matrix has size d x d, taking up to O(d?) time to invert

— or to solve the linear system V2 f(x;)Ax = —V f(x) for Ax.
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The secant method

Back to 1-dim.
Another iterative methods for finding zeros?

Newton-Raphson step

L1 = Ty — ;,((a;i))a

Lazy: use finite difference approximation

g S0 = S)

Tt — Tt—1

(for |z¢ — zr—1] small)
Obtain the secant method:

Tt — Tt—1

Ti+1 = Tt — f(xt)f(xt) — f(ze-1)

EPFL Machine Learning and Optimization Laboratory 14/18



The secant method Il

Figure: One step of the secant method
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The secant method 1l

Why? now have a derivative-free version of Newton's method.

Secant method for optimization: Can we also optimize a
differentiable univariate function f? — Yes, apply the secant
method to f’

Tt — Tt—1

f'(xe) = f(2e-1)

T = — [(x1)

» a second-derivative-free version of Newton for optimization.

Can we generalize this to higher dimensions to obtain a
Hessian-free version of Newton's method on R4?
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The secant condition
Applying finite difference approximation to f” (still 1-dim),

o= PO D) o

f(z) = f(@e—1) = He(ze — 2-1)

the secant condition.

» Newton's method: @11 := ¢ — f"(z¢) 71 ' (4)
» Secant method: @y =2y — H; ' f'(24)

In higher dimensions: Let H; € R%*¢ be a symmetric matrix
satisfying the d-dimensional secant condition

Vf(Xt) — Vf(xt_l) = Ht(Xt — xt—l)-
The Newton step then becomes

X1 =X — H7 'V f(xy). (QN)
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Quasi-Newton methods

If f is twice differentiable, join the secant condition along with the
first-order Taylor approximation of V f(x):

Vf(xe) = Vf(xi-1) = Hy(xe — x1-1) & V2 f(x0) (%0 — %41,

= (QN) approximates Newton's method.

Quasi-Newton method: Whenever (QN) is used with a
symmetric matrix satisfying the secant condition.

» How to find good H; ! matrices?
BFGS, L-BFGS, etc.

» Newton's method is a Quasi-Newton method if and only if f
is a nondegenerate quadratic function (Exercise 35). Hence,
Quasi-Newton methods do not generalize Newton's method
but form a family of related algorithms.
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