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Constrained Optimization

Constrained Optimization Problem

minimize f(x)
subject to xeX
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Frank-Wolfe Algorithm

Frank-Wolfe Algorithm:
s := LMO(Vf(x)),
xip1 = (1 —=7y)x + s,

for timesteps t = 0,1, ..., and

stepsize v := H—%

Linear Minimization Oracle:

LMO(g) := argmin (s, g)
seX
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Properties

v

Aways feasible: xg,%x1,...,%x; € X.
X¢+1 is on line segment [s, x;], for v € [0, 1].

v

Reduces non-linear to linear optimization

v

Projection-free

v

Sparse iterates (in terms of corners s used)

Invented and analyzed 1956 by Marguerite Frank, and Philip Wolfe.
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Duality Gap

Duality Gap

9(x) = (x =8, Vf(x))

Certificate for optimization quality:

max {x — s, Vf(x))

(x —x", Vf(x))
f(x) = f(x")

9(x)

ALY
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Stepsize variants

o 2
"= t+ 27
v¢ = argmin f((1 —v)x¢ + 7s), (line-search)
v€[0,1]
: 9(xt) }
= —_— ]_ -b d
Vt mln{LHS—Xt”2’ ) (gap ase )
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Convergence in O(1/¢) steps

Theorem

Let f: RY — R be convex and smooth with parameter L, and
xg € X. Then choosing any of the above stepsizes, the
Frank-Wolfe algorithm yields

2L diam(X)?

flor) = fx) < TR

Where diam(X) := maxx,yex ||x — y|| is the diameter of X.
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Proof of Convergence in O(1/¢) steps

Lemma

For a step x;+1 := x4 + (s — x¢) with arbitrary step-size
v € [0,1], it holds that

f(xep1) < f(xe) —vg(xe) + éjL diam(X)? ,
ifs = LMO(V f(x¢)).

Proof.
We write x := x4, ¥ := X¢+1 = X + Y(s — x). From the definition
of smoothness of f, we have

fly)= fx+9(s—x) .
< f(x) + (s —x, Vf(x)) + FLdiam(X)? .

The lemma follows by definition of the duality gap. O
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Proof of Convergence in O(1/¢) steps

From the Lemma we know that for every step of FW it holds that
F(xep1) < f(x0) —v9(x1) ++2C, if we chose v := 25 and write
C := £ Ldiam(X)2. This bound holds also for all mentioned
line-search variants (same RHS).

Writing h(x) := f(x) — f(x*) for the (unknown) objective error at
any point x, this implies that

h(xi41) < h(xt) —v9(x¢) +7°C
< h(x¢) — vh(x) +~2C

(1= yh(x) +9°C,
where we have used the certificate property h(x) < g(x) of the

duality gap.
The theorem then follows by induction (Exercise 1 of Lab 8). [
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Affine Invariance

Curvature Constant

Crim sup 5 (fy) — F(x) — {y —x, VF(x))
x,s€X,7v€[0,1] Y
y=x+7(s—x)

Algorithm is invariant to scaling of the input problem.
So is Cy.

(same as Newton, but here for constrained problems)

Cy < Ldiam(X)? for any norm!

All proofs hold for C instead of picking a particular L diam(X)?
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Convergence in duality gap

Theorem

Let f: R?* = R be convex and smooth with parameter L, and
xg € X, T > 2. Then choosing any of the above stepsizes, the
Frank-Wolfe algorithm yields at,1 <t <T s.t.

27/4Cf
< /=)
9(xe) < 7 +1
Proof.
Idea: not all gaps can be small (use Lemma again). O
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Extensions and Use Cases

Extensions:

» Approximate LMO (of additive of multiplicative accuracy)
» Randomized LMO
» unconstrained problems (Matching Pursuit variants)

Use cases:
Whenever projection is more costly than solving a linear problem

» Lasso and other L1-constrained problems
» Matrix Completion: scalable algorithm

» Relaxation of combinatorial problems

(e.g. matchings, network flows etc)
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Applications

recall: LMO(g) := argmin (s, g)

seX

X := conv(A)
Examples A Al |d |LMO (d = —g)
L1-ball {te;} 2d |d | +e; with argmax; |d;]
Simplex {e:} d |d |e; with argmax;d;
Norms {x,]|x]] <1} |oo |d |argmax(s,d)

s,|Is[[<1

Nuclear norm | {Y, ||Vl <1} | oo |d?
Wavelets .. 00 |00
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