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Coordinate Descent
Goal: Find x* € R? minimizing f(x). (Example: d = 2)
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Idea: Update one coordinate at a time, while keeping others fixed.
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Coordinate Descent

Goal: Find x* € RY minimizing f(x).
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Idea: Update one coordinate at a time, while keeping others fixed.
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Coordinate Descent
Modify only one coordinate per step:

select i; € [d]

Xty = Xt + Y€y,

Two main variants:

» Gradient-based step-size:

Xi1 = Xg — %Vitf(xt) €i;

» Exact coordinate minimization: solve the single-variable
minimization argmin, e f(x; + ve;,) in closed form.
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Randomized Coordinate Descent

select i; € [d] uniformly at random

Xep1 =X — £V, f(xe) €,

» Faster convergence than gradient descent
(if coordinate step is significantly cheaper than full gradient
step)
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Convergence Analysis

Assume coordinate-wise smoothness:

L
fx+7e) < fX) +9Vif(x) + 577 Vx€RY Yy ER, Vi

Is equivalent to coordinate-wise Lipschitz gradient:
|Vif(x +ve) — Vif(x)| < Lly|, Vxe€RY VyeR, Vi

» Additionally assume strong convexity

EPFL Machine Learning and Optimization Laboratory

7/20



Convergence Analysis: Linear Rate

Theorem

Let f be coordinate-wise smooth with constant L, and be strongly
convex with parameter u > 0. Then, coordinate descent with a
step-size of 1/L,

Xt41 = X — %vitf(xt) €, -

when choosing the active coordinate i, uniformly at random, has
an expected linear convergence rate of

Bl eo) — £ (1= 22) [ 60) — 171
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Convergence Proof

Proof.
Plugging the update rule, into the smoothness condition, we have

1
fxe1) < f(xe) — ﬁ\vitf(xtﬂz-
Take expectation with respect to #;:

Elf(xe1)] < flxi) - *E [V, f () }
= flxt) - ﬁg Z [Vif(xt)|

= f(xt) - HVf(Xt)H2

2dL

[Lemma: strongly convex f satisfy [|V f(x)[|? > p(f(x) — f*) Vx]
Subtracting f* from both sides, we therefore obtain

Blf (o) = £ < (1= 22) [£xe) = 7] .
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The Polyak-Lojasiewicz Condition

Definition: f satisfies the Polyak-Lojasiewicz Inequality (PL) if
the following holds for some y > 0,

VI = w(f(x) - ), Vx

Lemma (Strong Convexity = PL)

Let f be strongly convex with parameter ;1 > 0. Then f satisfies
PL for the same p.

Proof.
For all x and y we have

F) = )+ (VF(),y = %)+ 5 lly = x|
minimizing each side of the inequality with respect to y we obtain
£6) 2 1) = 5 VS .
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Linear Convergence without Strong Convexity
Examples satisfying PL:

» f(x) := g(Ax) for strongly convex g and arbitrary matrix A,
including least squares regression and many other applications
in machine learning.

Linear convergence for f satisfying the PL condition:

Corollary

For minimization of a function f which is coordinate-wise smooth
with constant L, satisfies the PL inequality, and has a non-empty
solution set X*, random coordinate descent with a step-size of
1/L has the expected linear convergence rate of

Bl 1] < (1= 2 [fxo) — 7]
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Importance Sampling

Uniformly random selection is not always best!
» individual smoothness constants L; for each coordinate 3
Flx+vei) < f(x) +9Vif (x) + 57

Coordinate descent using this modified selection probabilities
Pliy = 1] = ZLZZLZ and using a step-size of 1/L;, converges
(Exercise 39) with the faster rate of

Blfa) — £ < (1= 22) 176x0) - £7)

Often: L < L = max; L; !
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Steepest Coordinate Descent

» Coordinate selection rule

iy := argmax |V, f(x¢)] .

1€[d]

“Greedy” or steepest coordinate descent.
Deterministic vs random.
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Convergence of Steepest Coordinate Descent

Has same convergence rate as for random coordinate descent!

Use
maX]V f(x Z |Vif(x
(And: algorithm is deterministic, so no need to take expectations in the proof.)

Corollary

Steepest coordinate descent with a step-size of 1/L has the linear
convergence rate of

Elf(x) — 7 < (1= 2 (7o) = 171
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Faster Convergence of Steepest Coordinate Descent

Faster convergence can be obtained for this algorithm when the
strong convexity of f is measured with respect to the ¢1-norm
instead of the standard Euclidean norm, i.e.

F(y) 2 () + (V)5 =) + 5 ly = xI1.

Theorem

If f is coordinate-wise L-smooth, and strongly convex w.r.t. the
£1-norm with parameter 1 > 0, steepest coordinate descent with a
step-size of 1/L has the linear convergence rate of

Bl o) — 1< (1= B [ 60) - 1]
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Faster Convergence of Steepest Coordinate Descent

Proof: Same as above theorem, but using the following lemma
measuring the PL inequality in the £o,-norm:

Lemma

Let f be strongly convex w.r.t. the £1-norm with parameter
w1 > 0. Then f satisties

LIVF&IZ > m(f(x) — f9).

(Proof: omitted)
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Non-smooth objectives

Have proved everything for smooth f. What about non-smooth?

Figure: A smooth function: f(x) := ||x||%.

figure by Alp Yurtsever & Volkan Cevher, EPFL
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Non-smooth objectives

For general non-smooth f, coordinate descent fails: gets
permanently stuck:

Figure: A non-smooth function: f(x) := ||x||? + |71 — x2].

figure by Alp Yurtsever & Volkan Cevher, EPFL
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Non-smooth separable objectives

What if the non-smooth part is separable over the coordinates?
f(x) = g(x) + h(x) with h(x) = hi(z;),

» global convergence!

Figure: A non-smooth but separable function: f(x) := ||x||% + ||x/|1-
figure by Alp Yurtsever & Volkan Cevher, EPFL
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Applications

» Random coordinate descent
> is state-of-the-art for generalized linear models

f(x) = g(Ax) + >, hi(z;).
Regression, classification (with different regularizers)

» Steepest coordinate descent

» Training with the help of GPUs
(or other hardware of limited memory):

Use steepest coordinates to decide which subset of the data A
to put onto the GPU.
— DuHL algorithm used by IBM & NVIDIA. linkl, link2
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https://blogs.nvidia.com/blog/2018/03/20/big-blue-touts-partnership-with-nvidia-at-ibm-think-confab/
https://www.zurich.ibm.com/snapml/

