
Optimization for Machine Learning
CS-439

Lecture 10: Accelerated Gradient Descent

Martin Jaggi

EPFL – github.com/epfml/OptML_course

May 18, 2018

github.com/epfml/OptML_course


Re-visiting gradient descent

Property of f Learning Rate γ Number of steps

‖x0 − x?‖ ≤ R,

‖∇f(x)‖ ≤ L for all x

R
L
√
T

O(1/ε2)

f is L-smooth 1
L O(1/ε)

f is L-smooth

and µ-strongly convex

1
L O(log(1/ε))
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Improving gradient descent

Problem: Can we do any better? In particular, can we accelerate
gradient descent?

Solution: Nesterov’s accelerated gradient methods come to the
rescue.
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Momentum

Idea:
Use momentum from “movement” so far

xt+1 := xt − γ∇f(xt) + ν
[
xt − xt−1

]

ν > 0 is called the momentum parameter
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Accelerated Gradient Method - AGD

x0 := y0 := z0

xt+1 := τzt + (1− τ)yt

yt+1 := xt+1 −
1

L
∇f(xt+1)

zt+1 := zt − γ∇f(xt+1)
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Accelerated Gradient Method - Analysis

Problem: What about the values of γ and τ?

Solution: We start with analysis and set them so as to get the best
results.
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AGD - Analysis for smooth convex functions, cont.

Theorem

Let f : Rd → R be convex and differentiable with a global
minimum x?; furthermore, suppose that f is smooth with
parameter L, ‖x0 − x?‖ ≤ R and |f(x0)− f(x?)| ≤ d. Then, after

T = 4R
√

L
d steps and setting γ = R√

dL
and τ such that

1−τ
τ = γL, the average of the first T iterates satisfies

f
( 1
T

T−1∑
t=0

xt

)
− f(x?) ≤ d

2
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AGD - Analysis for smooth convex functions, cont.
Proof.
(i)
Recall from Lecture 3 that the updates of the type
yt+1 := xt+1 − 1

L∇f(xt+1) are always monotone decreasing:

f(yt) ≤ f(xt)−
1

2L
‖∇f(xt)‖2, t ≥ 0.

(ii)
Use the fact that 2v>w = ‖v‖2 + ‖w‖2 − ‖v −w‖2 to obtain

γ∇f(xt+1)
>(zt−x?) =

γ2

2
‖∇f(xt+1)‖2+

1

2
‖zt−x?‖2−

1

2
‖zt+1−x?‖2

Using the first equation we get

γ∇f(xt+1)
>(zt − x?) ≤ γ2L(f(xt+1)− f(yt+1)) +

1
2‖zt − x?‖2 − 1

2‖zt+1 − x?‖2 (1)
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AGD - Analysis for smooth convex functions, cont.

Use convexity and set 1−τ
τ = γL to obtain

γ∇f(xt+1)
>[(xt+1−x?)− (zt−x?)] = γ∇f(xt+1)

>(xt+1 − zt)

= 1−τ
τ γ∇f(xt+1)

>(yt − xt+1)

≤ γ2L(f(yt)− f(xt+1)) (2)

Add (1) and (2) to obtain

γ∇f(xt+1)
>(xt+1 − x?) ≤ γ2L(f(yt)− f(yt+1)) +

1
2‖zt − x?‖2 − 1

2‖zt+1 − x?‖2
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AGD - Analysis for smooth convex functions, cont.

We know that

f
( 1
T

T−1∑
t=0

xt

)
− f(x?) ≤ 1

T

T−1∑
t=0

∇f(xt+1)
>(xt+1 − x?)

Using the telescoping sum in the previous slide, the proposed
substitutions give the desired result.

EPFL Machine Learning and Optimization Laboratory 10/17



AGD - Analysis for smooth convex functions, cont.

Theorem

By repeatedly restarting the AGD algorithm, we can find an
ε-optimal solution in O(1/

√
ε) updates.

Proof.

Use the previous theorem (Exercise).
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AGD - Analysis for strongly convex smooth functions

Theorem

Along with the previous assumptions, if we assume that the
function f is µ-strongly convex, then we can find a point x with

O(
√

L
µ ) updates such that

‖x− x?‖2 ≤ 1

2
‖x0 − x?‖2

Proof.

Use the results of previous theorem with ε = µ
4‖x0 − x?‖2 to find

a point x such that

f(x)− f(x?) ≤ µ

4
‖x0 − x?‖2 (3)

This will take O(
√

L
µ ) update steps.
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AGD - Analysis for strongly convex smooth
functions, cont.

Proof.

Use strong convexity of f to obtain

µ

2
‖x− x?‖2 ≤ f(x)− f(x?) (4)

Combine (3) and (4) to get the desired result.
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AGD - Analysis for strongly convex smooth
functions, cont.

Theorem

Convergence in Iterate -
By repeatedly starting the AGD algorithm, for a µ-strongly convex
and L-smooth function, we can find an ε-optimal solution in the
value of iterate in O(log(1/ε)) updates where the constant in the

big-O is
√

L
µ compared to vanilla GD where the constant is L

µ .
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Overview of Accelerated Gradient Method

Properties of f GD steps AGD steps

f is L-smooth O(1/ε) O(1/
√
ε)

f is L-smooth

and µ-strongly convex
O(Lµ log(1/ε)) O(

√
L
µ log(1/ε))

Table: A comparison of Gradient descent and Accelerated Gradient
Method for convex functions - number of updates to obtain an ε-optimal
solution
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Acceleration in practice
Application to a Lasso problemBack to lasso example: acceleration can really help!
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Acceleration in practice

Excellent illustration and simulation:

https://distill.pub/2017/momentum/

Potential issues

I requires tuning of a new hyperparameter
(the momentum param)
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