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Re-visiting gradient descent

Property of f

Learning Rate ~y

Number of steps

%0 —x*[| < R,

and p-strongly convex

_R_ O(1/£2
IVf(x)|| < L for all x LVT (1/¢%)
f is L-smooth % O(1/e)
f is L-smooth % Olon(1)o)
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Improving gradient descent

Problem: Can we do any better? In particular, can we accelerate
gradient descent?

Solution: Nesterov's accelerated gradient methods come to the
rescue.
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Momentum

Idea:
Use momentum from “movement” so far

X1 =X — YV f(x¢) + V[Xt — Xt—l]

v > 0 is called the momentum parameter
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Accelerated Gradient Method - AGD

X0 = Yo = Zo
Xer1 =72 + (1 — 7))y

1
Vi1 = Xeq1 — Evf(xt+1)

zi11 =2t — YV f(Xe41)
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Accelerated Gradient Method - Analysis

Problem: What about the values of « and 77

Solution: We start with analysis and set them so as to get the best
results.
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AGD - Analysis for smooth convex functions, cont.

Theorem

Let f: R? = R be convex and differentiable with a global
minimum x*; furthermore, suppose that f is smooth with
parameter L, ||xo —x*|| < R and |f(x0) — f(x*)| < d. Then, after

_ L ; - R
11“ = 4R,/ ‘; steps and setting v = NI and T such that

—~ =L, the average of the first T' iterates satisfies

F(E Y ) - sy < 2
t=0
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AGD - Analysis for smooth convex functions, cont.
Proof.

(i)
Recall from Lecture 3 that the updates of the type
Viil = Xpp1 — %Vf(Xt+1) are always monotone decreasing:

1
flye) < f(xe) — EHVf(Xt)||27 t>0.
(i)
Use the fact that 2v'w = ||v||2 + ||w||? — ||v — w]||? to obtain
T * 72 2 1 * (|12 1 * (12
W) (2e=x7) = IV o) [P+ S lze—x" " =S |ze41 -7
Using the first equation we get

YWV f(xe1) (2 — x*) < YL(f(%e41) — f(ye41)) +

sllze = x| = 3llzen —x*> (1)
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AGD - Analysis for smooth convex functions, cont.

Use convexity and set 1777 = L to obtain

YV (xe41) (%41 —%") = (2 —x*)] =V (xe1) T (Xe11 — 21)
= LTV f(xe1) T (vt — Xe41)
<7 L(f(yt) f(xe41))  (2)

Add (1) and (2) to obtain

YV (xe41) | (X1 —x) < Y2L(f(ye) — f(yer1)) +

sllze — x| = gllzep1 — x*?
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AGD - Analysis for smooth convex functions, cont.

We know that

L T LT
f(f > Xt) —fx) =5 > Vi) (e — x*)
t=0 =0

Using the telescoping sum in the previous slide, the proposed
substitutions give the desired result.
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AGD - Analysis for smooth convex functions, cont.

Theorem

By repeatedly restarting the AGD algorithm, we can find an
e-optimal solution in O(1/+/¢) updates.

Proof.

Use the previous theorem (Exercise). O
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AGD - Analysis for strongly convex smooth functions
Theorem

Along with the previous assumptions, if we assume that the
function f is u-strongly convex, then we can find a point x with

(’)(\/%) updates such that
* (12 1 * |12
e = x| < S llxo — 7]
Proof.

Use the results of previous theorem with e = £ ||xo — x*||* to find
a point x such that

Fx) = f(x) < %o — x*||? (3)
This will take O(\/%) update steps. O
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AGD - Analysis for strongly convex smooth
functions, cont.

Proof.

Use strong convexity of f to obtain
1
Bl — 1P < £0) — £x)

Combine (3) and (4) to get the desired result.
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AGD - Analysis for strongly convex smooth
functions, cont.

Theorem

Convergence in lterate -

By repeatedly starting the AGD algorithm, for a p-strongly convex
and L-smooth function, we can find an e-optimal solution in the
value of iterate in O(log(1/¢)) updates where the constant in the

big-O is \/% compared to vanilla GD where the constant is %
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Overview of Accelerated Gradient Method

and p-strongly convex

Properties of f GD steps AGD steps
f is L-smooth O(1/e) O(1/+/2)
f is L-smooth
O(L10g(1/2)) | O(/Elog(1/e))

Table: A comparison of Gradient descent and Accelerated Gradient

Method for convex functions - number of updates to obtain an ¢-optimal

solution
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Acceleration in practice
Application to a Lasso problem
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Acceleration in practice

Excellent illustration and simulation:

https://distill.pub/2017/momentum/

Potential issues

> requires tuning of a new hyperparameter
(the momentum param)
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https://distill.pub/2017/momentum/

