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Duality
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Duality

Given a function f : R? — R, define
its conjugate f*: R% —» R as

fH(y) = max x"y — f(x)

a.k.a. Legendre transform or Fenchel conjugate function.

f(z)

Figure: maximum gap
between linear function
x'y and f(x).

\/ Ao 7w
figure by Boyd & Vandenberghe
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Properties

> f* is always convex, even if f is not.
Proof: point-wise maximum of convex (affine) functions iny.

v

Fenchel's inequality: for any x,y,

f)+fy)2x'y

» Hence conjugate of conjugate f** satisfies f** < f.
> If fis closed and convex, then f** = f.
> If f is closed and convex, then for any x,y,
Exercise!
y € 0f(x) & x€df(y)
& f(x)+ [ y)=x"y
» Separable functions: If f(u,v) = fi(u) + f2(v), then

fH(w,2) = fi(w) + f3(2)
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Examples

» Recall: Indicator function of a set C C R¥ is

Lo (x) = {0 x e C,

+o0o otherwise.
If f(x) = tc(x), then its conjugate is

* — ma; T
f(y) max y ' x

called the support function of C.

» Norm: if f(x) = ||x]|, then its conjugate is
I Y) = tzefjal <1y (YY)

(i.e. indicator of the dual norm ball) Note: The dual norm of
||.|| is defined as ||y||« := Max]|x||<1 y'x. Eg. Il < oo
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Examples, cont

Generalized linear models

min f(Ax) + g(x)
xeR4

reformulate

min  f(w)+g(x) st. w=Ax
x€R4,weR?

Lagrange dual function

L(u) := xeRglglean f(w) +g(x) +u’ (w — Ax)

=~ f*(u) —g*(-ATw)
Dual problem

max [£(u) = —f*(u) - g"(-ATw)].
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Examples, cont

Lasso
min 1[|4x - bJ2 + Allx|;
x€R4
is an example, for f(w) := 3||w — b||? and g(x) := A||x|)1.

Can compute £*(u) = }[Ib]> = 3]ib — ul?
and g*(V) = L{z:||z||oo§1}(v/)\)'

so that the dual problem is

max — f*(u) —g*(—A"u).

ucRk”

& max — 3bP+ib-ul? st [[-ATu/N|~ < 1.
ucRk”

& min |[b—ul? st. [|[ATulle <A
uelRR”
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Why Duality?

Similarly for least squares, ridge regression, SVM, logistic
regression, elastic net, etc.

Advantages:

» Duality gap gives a certificate of current optimization quality

f(AZ) +g(x)
> minygcpa f(AX) + g(x)
>

maxucrs —/*(w) — g*(~A )
> —f(w) - g*'(-ATw)

for any x,1.
» Stopping criterion

» Dual can in some cases be easier to solve
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Chapter X.2

Zero-Order Optimization
< Derivative-Free
< Blackbox
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Look mom no gradients!

Can we optimize min, s f(x) if without access to gradients?

meet the newest fanciest optimization algorithm,...
Random search

pick a random direction d; € R?

do line-search ~ := argmin f(x; + yd;)
yER
Xi1 = X¢ + ydy
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Convergence rate for derivative-free random search
Converges same as gradient descent - up to a slow-down factor d.

Proof. Assume that f is a L-smooth convex, differentiable
function. For any ~, by smoothness, we have:

2
Flose ) < F) + lde, V7)) + L

Minimizing the upper bound, there is a step size 4 for which

d 2
o +3d) < 1) = {757 VI (x0)

The step size we actually took (based on f directly) can only be

better:
f(xe +vde) < f(x¢ +7dy).

Taking expectations:
E[f(x: +7dy)] < E[f(x1)] — *E[va(xt)ll ]
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Convergence rate for derivative-free random search

Same as what we obtained for gradient descent,
now with an extra factor of d. d can be hugel!!l

Can do the same for different function classes, as before

» For convex functions, we get a rate of O(dL/¢) .

» For strongly convex, you get O(dLlog(1/¢)) .

Always d times the complexity of gradient descent on the function
class.

credits to Moritz Hardt
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Applications for derivative-free random search

Applications
» competitive method for Reinforcement learning
» memory and communication advantages: never need to store
a gradient
» hyperparameter optimization, and other difficult e.g. discrete
optimization problems
» can be improved to learn a second-order model of the

function, during optimization [Stich PhD thesis, 2014]

EPFL Machine Learning and Optimization Laboratory 13/16


https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/98277/eth-47310-02.pdf

Reinforcement learning

siy1 = f(st,a, ).

where s; is the state of the system, a; is the control action, and e;
is some random noise. We assume that f is fixed, but unknown.

We search for a control ‘policy’
a;:=m7(ay,...,a,-1,80,--.,S¢) -

which takes a trajectory of the dynamical system and outputs a
new control action. Want to maximize overall reward

max Eet [ZRt St, At ]

s.t. S = f(St,at,et)

(so given)

Examples: Simulations, Games (e.g. Atari), Alpha Go
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Chapter X.3
Adaptive Methods
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Adagrad
Adagrad is an adaptive variant of SGD

pick a stochastic gradient gy
¢

update [Gy]; :== Z([gs]i)2 for each feature ¢
s=0

[Xer1]i i= [xe)i — [g¢]i for each feature i

Y
(Gl

(recall the natural choice of g := V fj(x;) for sum-structured
objective functions f =3, f;)

» chooses an adaptive, coordinate-wise learning rate
» strong performance in practice
» Variants: Adadelta, Adam, RMSprop
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