Optimization for Machine Learning CS-439

Lecture 11: Duality, Gradient-free, and Applications

Martin Jaggi

EPFL – github.com/epfml/OptML_course

May 25, 2018

Chapter X.1

Duality

EPFL Machine Learning and Optimization Laboratory 2/16

Duality

Given a function $f : \mathbb{R}^d \to \mathbb{R}$, define its conjugate $f^*:\mathbb{R}^d\rightarrow\mathbb{R}$ as

$$
f^*(\mathbf{y}) := \max_{\mathbf{x}} \ \mathbf{x}^\top \mathbf{y} - f(\mathbf{x})
$$

a.k.a. Legendre transform or Fenchel conjugate function. 3.3 The conjugate function 91

Figure: maximum gap between linear function $\mathbf{x}^{\top}\mathbf{y}$ and $f(\mathbf{x})$.

figure by Boyd & Vandenberghe

 $FDEL$, Machine Learning and Ontimization Laboratory. occurs at a point where α EPFL Machine Learning and Optimization Laboratory 3/16

Properties

- ► f^* is always convex, even if f is not. Proof: point-wise maximum of convex (affine) functions in y.
- Fenchel's inequality: for any x, y ,

$$
f(\mathbf{x}) + f^*(\mathbf{y}) \ge \mathbf{x}^\top \mathbf{y}
$$

- ► Hence conjugate of conjugate f^{**} satisfies $f^{**} \leq f$.
- If f is closed and convex, then $f^{**} = f$.
- If f is closed and convex, then for any x, y ,

Exercise!

$$
\mathbf{y} \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \partial f^*(\mathbf{y})
$$

$$
\Leftrightarrow f(\mathbf{x}) + f^*(\mathbf{y}) = \mathbf{x}^\top \mathbf{y}
$$

Separable functions: If $f(\mathbf{u}, \mathbf{v}) = f_1(\mathbf{u}) + f_2(\mathbf{v})$, then

$$
f^*(\mathbf{w}, \mathbf{z}) = f_1^*(\mathbf{w}) + f_2^*(\mathbf{z})
$$

Examples

► Recall: Indicator function of a set $C \subseteq \mathbb{R}^d$ is

$$
\iota_C(\mathbf{x}) := \begin{cases} 0 & \mathbf{x} \in C, \\ +\infty & \text{otherwise.} \end{cases}
$$

If $f(\mathbf{x}) = \iota_C(\mathbf{x})$, then its conjugate is

$$
f^*(\mathbf{y}) = \max_{\mathbf{x} \in C} \mathbf{y}^\top \mathbf{x}
$$

called the support function of C .

 \triangleright Norm: if $f(\mathbf{x}) = ||\mathbf{x}||$, then its conjugate is

$$
f^*(\mathbf{y}) = \iota_{\{\mathbf{z}: \|\mathbf{z}\|_* \leq 1\}}(\mathbf{y})
$$

(i.e. indicator of the dual norm ball) Note: The dual norm of $\|.\|$ is defined as $\|\mathbf{y}\|_* := \max_{\|\mathbf{x}\| \leq 1} \mathbf{y}^\top \mathbf{x}$. E.g. $\|.\|_1 \leftrightarrow \|.\|_\infty$.

Examples, cont

Generalized linear models

$$
\min_{\mathbf{x} \in \mathbb{R}^d} f(A\mathbf{x}) + g(\mathbf{x})
$$

reformulate

$$
\min_{\mathbf{x} \in \mathbb{R}^d, \mathbf{w} \in \mathbb{R}^n} f(\mathbf{w}) + g(\mathbf{x}) \text{ s.t. } \mathbf{w} = A\mathbf{x}
$$

Lagrange dual function

$$
\mathcal{L}(\mathbf{u}) := \min_{\mathbf{x} \in \mathbb{R}^d, \mathbf{w} \in \mathbb{R}^n} f(\mathbf{w}) + g(\mathbf{x}) + \mathbf{u}^\top (\mathbf{w} - A\mathbf{x})
$$

$$
= - f^*(\mathbf{u}) - g^*(-A^\top \mathbf{u})
$$

Dual problem

$$
\max_{\mathbf{u}\in\mathbb{R}^n} \left[\mathcal{L}(\mathbf{u}) = -f^*(\mathbf{u}) - g^*(-A^\top \mathbf{u}) \right].
$$

EPFL Machine Learning and Optimization Laboratory 6/16

Examples, cont

Lasso

$$
\min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{2} ||A\mathbf{x} - \mathbf{b}||^2 + \lambda ||\mathbf{x}||_1
$$

is an example, for $f(\mathbf{w}) := \frac{1}{2} ||\mathbf{w} - \mathbf{b}||^2$ and $g(\mathbf{x}) := \lambda ||\mathbf{x}||_1$.
Can compute $f^*(\mathbf{u}) = \frac{1}{2} ||\mathbf{b}||^2 - \frac{1}{2} ||\mathbf{b} - \mathbf{u}||^2$
and $g^*(\mathbf{v}) = \iota_{\{\mathbf{z} : ||\mathbf{z}||_{\infty} \le 1\}}(\mathbf{v}/\lambda)$,

so that the dual problem is

$$
\max_{\mathbf{u}\in\mathbb{R}^n} - f^*(\mathbf{u}) - g^*(-A^\top\mathbf{u}).
$$

\n
$$
\Leftrightarrow \max_{\mathbf{u}\in\mathbb{R}^n} -\frac{1}{2}||\mathbf{b}||^2 + \frac{1}{2}||\mathbf{b} - \mathbf{u}||^2 \text{ s.t. } || - A^\top\mathbf{u}/\lambda||_{\infty} \le 1.
$$

\n
$$
\Leftrightarrow \min_{\mathbf{u}\in\mathbb{R}^n} ||\mathbf{b} - \mathbf{u}||^2 \text{ s.t. } ||A^\top\mathbf{u}||_{\infty} \le \lambda.
$$

Why Duality?

Similarly for least squares, ridge regression, SVM, logistic regression, elastic net, etc.

Advantages:

 \triangleright Duality gap gives a certificate of current optimization quality

$$
f(A\bar{\mathbf{x}}) + g(\bar{\mathbf{x}})
$$

\n
$$
\geq \min_{\mathbf{x} \in \mathbb{R}^d} f(A\mathbf{x}) + g(\mathbf{x})
$$

\n
$$
\geq
$$

\n
$$
\max_{\mathbf{u} \in \mathbb{R}^n} -f^*(\mathbf{u}) - g^*(-A^\top \mathbf{u})
$$

\n
$$
\geq -f^*(\bar{\mathbf{u}}) - g^*(-A^\top \bar{\mathbf{u}})
$$

for any $\bar{\mathbf{x}}, \bar{\mathbf{u}}$.

- \triangleright Stopping criterion
- \triangleright Dual can in some cases be easier to solve

Chapter X.2

Zero-Order Optimization ⇔ Derivative-Free .. ⇔ Blackbox ..

EPFL Machine Learning and Optimization Laboratory 9/16

Look mom no gradients!

Can we optimize $\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ if without access to gradients?

meet the newest fanciest optimization algorithm,... Random search

> pick a random direction $\mathbf{d}_t \in \mathbb{R}^d$ do line-search $\gamma:=\mathop{\rm argmin} f({\mathbf x}_t+\gamma{\mathbf d}_t)$ $\gamma \in \mathbb{R}$ $\mathbf{x}_{t+1} := \mathbf{x}_t + \gamma \mathbf{d}_t$

EPFL Machine Learning and Optimization Laboratory 10/16

Convergence rate for derivative-free random search

Converges same as gradient descent - up to a slow-down factor d . **Proof.** Assume that f is a L -smooth convex, differentiable function. For any γ , by smoothness, we have:

$$
f(\mathbf{x}_t + \gamma \mathbf{d}_t) \le f(\mathbf{x}_t) + \gamma \langle \mathbf{d}_t, \nabla f(\mathbf{x}_t) \rangle + \frac{\gamma^2 L}{2} ||\mathbf{d}_t||^2
$$

Minimizing the upper bound, there is a step size $\bar{\gamma}$ for which

$$
f(\mathbf{x}_t + \bar{\gamma}\mathbf{d}_t) \le f(\mathbf{x}_t) - \frac{1}{L} \Big\langle \frac{\mathbf{d}_t}{\|\mathbf{d}_t\|^2}, \nabla f(\mathbf{x}_t) \Big\rangle^2
$$

The step size we actually took (based on f directly) can only be better:

$$
f(\mathbf{x}_t + \gamma \mathbf{d}_t) \leq f(\mathbf{x}_t + \bar{\gamma} \mathbf{d}_t).
$$

Taking expectations:

$$
\mathbb{E}[f(\mathbf{x}_t + \gamma \mathbf{d}_t)] \leq \mathbb{E}[f(\mathbf{x}_t)] - \frac{1}{Ld} \mathbb{E}[\|\nabla f(\mathbf{x}_t)\|^2]
$$

EPFL Machine Learning and Optimization Laboratory 11/16

Convergence rate for derivative-free random search

Same as what we obtained for gradient descent, now with an extra factor of d . d can be huge!!!

Can do the same for different function classes, as before

- For convex functions, we get a rate of $\mathcal{O}(dL/\varepsilon)$.
- For strongly convex, you get $\mathcal{O}(dL\log(1/\varepsilon))$.

Always d times the complexity of gradient descent on the function class.

credits to Moritz Hardt

Applications for derivative-free random search

Applications

- \triangleright competitive method for Reinforcement learning
- \triangleright memory and communication advantages: never need to store a gradient
- \triangleright hyperparameter optimization, and other difficult e.g. discrete optimization problems
- \triangleright can be improved to learn a second-order model of the function, during optimization [\[Stich PhD thesis, 2014\]](https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/98277/eth-47310-02.pdf)

Reinforcement learning

 $\mathbf{s}_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t, \mathbf{e}_t).$

where \mathbf{s}_t is the state of the system, \mathbf{a}_t is the control action, and \mathbf{e}_t is some random noise. We assume that f is fixed, but unknown.

We search for a control 'policy'

$$
\mathbf{a}_t:=\pi(\mathbf{a}_1,\ldots,\mathbf{a}_{t-1},\mathbf{s}_0,\ldots,\mathbf{s}_t)\,.
$$

which takes a trajectory of the dynamical system and outputs a new control action. Want to maximize overall reward

$$
\max_{\mathbf{a}_t} \mathbb{E}_{\mathbf{e}_t} \Big[\sum_{t=0}^N R_t(\mathbf{s}_t, \mathbf{a}_t) \Big]
$$

s.t. $\mathbf{s}_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t, \mathbf{e}_t)$
(s₀ given)

Examples: Simulations, Games (e.g. Atari), Alpha Go

EPFL Machine Learning and Optimization Laboratory 14/16

Chapter X.3

Adaptive Methods

EPFL Machine Learning and Optimization Laboratory 15/16

Adagrad

Adagrad is an adaptive variant of SGD

\n
$$
\text{pick a stochastic gradient } g_t
$$
\n

\n\n $\text{update } [G_t]_i := \sum_{s=0}^t ([g_s]_i)^2 \quad \text{for each feature } i$ \n

\n\n $\left[\mathbf{x}_{t+1}\right]_i := [\mathbf{x}_t]_i - \frac{\gamma}{\sqrt{[G_t]_i}} [\mathbf{g}_t]_i \quad \text{for each feature } i$ \n

(recall the natural choice of $\mathbf{g}_t := \nabla f_j(\mathbf{x}_t)$ for sum-structured objective functions $f=\sum_j f_j)$

- \triangleright chooses an adaptive, coordinate-wise learning rate
- \triangleright strong performance in practice
- ▶ Variants: Adadelta, Adam, RMSprop

EPFL Machine Learning and Optimization Laboratory 16/16