.. currentmodule:: pandas
.. ipython:: python :suppress: import os import csv from StringIO import StringIO import numpy as np np.random.seed(123456) randn = np.random.randn np.set_printoptions(precision=4, suppress=True) import matplotlib.pyplot as plt plt.close('all') from pandas import * import pandas.util.testing as tm clipdf = DataFrame({'A':[1,2,3],'B':[4,5,6],'C':['p','q','r']}, index=['x','y','z'])
A handy way to grab data is to use the read_clipboard
method, which takes
the contents of the clipboard buffer and passes them to the read_table
method described in the next section. For instance, you can copy the following
text to the clipboard (CTRL-C on many operating systems):
A B C
x 1 4 p
y 2 5 q
z 3 6 r
And then import the data directly to a DataFrame by calling:
clipdf = read_clipboard(sep='\s*')
.. ipython:: python clipdf
The two workhorse functions for reading text files (a.k.a. flat files) are :func:`~pandas.io.parsers.read_csv` and :func:`~pandas.io.parsers.read_table`. They both use the same parsing code to intelligently convert tabular data into a DataFrame object. They can take a number of arguments:
filepath_or_buffer
: Either a string path to a file, or any object with aread
method (such as an open file orStringIO
).sep
ordelimiter
: A delimiter / separator to split fields on. read_csv is capable of inferring the delimiter automatically in some cases by "sniffing." The separator may be specified as a regular expression; for instance you may use 's*' to indicate arbitrary whitespace.dialect
: string or :class:`python:csv.Dialect` instance to expose more ways to specify the file formatheader
: row number to use as the column names, and the start of the data. Defaults to 0 (first row); specify None if there is no header row.skiprows
: A collection of numbers for rows in the file to skip. Can also be an integer to skip the firstn
rowsindex_col
: column number, column name, or list of column numbers/names, to use as theindex
(row labels) of the resulting DataFrame. By default, it will number the rows without using any column, unless there is one more data column than there are headers, in which case the first column is taken as the index.names
: List of column names to use. If passed, header will be implicitly set to None.na_values
: optional list of strings to recognize as NaN (missing values), either in addition to or in lieu of the default set.keep_default_na
: whether to include the default set of missing values in addition to the ones specified inna_values
parse_dates
: if True then index will be parsed as dates (False by default). You can specify more complicated options to parse a subset of columns or a combination of columns into a single date column (list of ints or names, list of lists, or dict) [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column [[1, 3]] -> combine columns 1 and 3 and parse as a single date column {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result 'foo'keep_date_col
: if True, then date component columns passed intoparse_dates
will be retained in the output (False by default).date_parser
: function to use to parse strings into datetime objects. Ifparse_dates
is True, it defaults to the very robustdateutil.parser
. Specifying this implicitly setsparse_dates
as True. You can also use functions from community supported date converters from date_converters.pydayfirst
: if True then uses the DD/MM international/European date format (This is False by default)thousands
: sepcifies the thousands separator. If not None, then parser will try to look for it in the output and parse relevant data to integers. Because it has to essentially scan through the data again, this causes a significant performance hit so only use if necessary.comment
: denotes the start of a comment and ignores the rest of the line. Currently line commenting is not supported.nrows
: Number of rows to read out of the file. Useful to only read a small portion of a large fileiterator
: If True, return aTextParser
to enable reading a file into memory piece by piecechunksize
: An number of rows to be used to "chunk" a file into pieces. Will cause anTextParser
object to be returned. More on this below in the section on :ref:`iterating and chunking <io.chunking>`skip_footer
: number of lines to skip at bottom of file (default 0)converters
: a dictionary of functions for converting values in certain columns, where keys are either integers or column labelsencoding
: a string representing the encoding to use if the contents are non-asciiverbose
: show number of NA values inserted in non-numeric columnssqueeze
: if True then output with only one column is turned into Series
.. ipython:: python :suppress: f = open('foo.csv','w') f.write('date,A,B,C\n20090101,a,1,2\n20090102,b,3,4\n20090103,c,4,5') f.close()
Consider a typical CSV file containing, in this case, some time series data:
.. ipython:: python print open('foo.csv').read()
The default for read_csv is to create a DataFrame with simple numbered rows:
.. ipython:: python read_csv('foo.csv')
In the case of indexed data, you can pass the column number or column name you wish to use as the index:
.. ipython:: python read_csv('foo.csv', index_col=0)
.. ipython:: python read_csv('foo.csv', index_col='date')
You can also use a list of columns to create a hierarchical index:
.. ipython:: python read_csv('foo.csv', index_col=[0, 'A'])
The dialect
keyword gives greater flexibility in specifying the file format.
By default it uses the Excel dialect but you can specify either the dialect name
or a :class:`python:csv.Dialect` instance.
.. ipython:: python :suppress: data = ('label1,label2,label3\n' 'index1,"a,c,e\n' 'index2,b,d,f')
Suppose you had data with unenclosed quotes:
.. ipython:: python print data
By default, read_csv
uses the Excel dialect and treats the double quote as
the quote character, which causes it to fail when it finds a newline before it
finds the closing double quote.
We can get around this using dialect
.. ipython:: python dia = csv.excel() dia.quoting = csv.QUOTE_NONE read_csv(StringIO(data), dialect=dia)
The parsers make every attempt to "do the right thing" and not be very fragile. Type inference is a pretty big deal. So if a column can be coerced to integer dtype without altering the contents, it will do so. Any non-numeric columns will come through as object dtype as with the rest of pandas objects.
To better facilitate working with datetime data, :func:`~pandas.io.parsers.read_csv` and :func:`~pandas.io.parsers.read_table`
uses the keyword arguments parse_dates
and date_parser
to allow users
to specify a variety of columns and date/time formats to turn the input text
data into datetime
objects.
The simplest case is to just pass in parse_dates=True
:
.. ipython:: python # Use a column as an index, and parse it as dates. df = read_csv('foo.csv', index_col=0, parse_dates=True) df # These are python datetime objects df.index
.. ipython:: python :suppress: os.remove('foo.csv')
It is often the case that we may want to store date and time data separately,
or store various date fields separately. the parse_dates
keyword can be
used to specify a combination of columns to parse the dates and/or times from.
You can specify a list of column lists to parse_dates
, the resulting date
columns will be prepended to the output (so as to not affect the existing column
order) and the new column names will be the concatenation of the component
column names:
.. ipython:: python :suppress: data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") with open('tmp.csv', 'w') as fh: fh.write(data)
.. ipython:: python print open('tmp.csv').read() df = read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]]) df
By default the parser removes the component date columns, but you can choose
to retain them via the keep_date_col
keyword:
.. ipython:: python df = read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) df
Note that if you wish to combine multiple columns into a single date column, a
nested list must be used. In other words, parse_dates=[1, 2]
indicates that
the second and third columns should each be parsed as separate date columns
while parse_dates=[[1, 2]]
means the two columns should be parsed into a
single column.
You can also use a dict to specify custom name columns:
.. ipython:: python date_spec = {'nominal': [1, 2], 'actual': [1, 3]} df = read_csv('tmp.csv', header=None, parse_dates=date_spec) df
It is important to remember that if multiple text columns are to be parsed into a single date column, then a new column is prepended to the data. The index_col specification is based off of this new set of columns rather than the original data columns:
.. ipython:: python date_spec = {'nominal': [1, 2], 'actual': [1, 3]} df = read_csv('tmp.csv', header=None, parse_dates=date_spec, index_col=0) #index is the nominal column df
Note: When passing a dict as the parse_dates argument, the order of the columns prepended is not guaranteed, because dict objects do not impose an ordering on their keys. On Python 2.7+ you may use collections.OrderedDict instead of a regular dict if this matters to you. Because of this, when using a dict for 'parse_dates' in conjunction with the index_col argument, it's best to specify index_col as a column label rather then as an index on the resulting frame.
Finally, the parser allows you can specify a custom date_parser
function to
take full advantage of the flexiblity of the date parsing API:
.. ipython:: python import pandas.io.date_converters as conv df = read_csv('tmp.csv', header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) df
You can explore the date parsing functionality in date_converters.py
and
add your own. We would love to turn this module into a community supported set
of date/time parsers. To get you started, date_converters.py
contains
functions to parse dual date and time columns, year/month/day columns,
and year/month/day/hour/minute/second columns. It also contains a
generic_parser
function so you can curry it with a function that deals with
a single date rather than the entire array.
.. ipython:: python :suppress: os.remove('tmp.csv')
While US date formats tend to be MM/DD/YYYY, many international formats use
DD/MM/YYYY instead. For convenience, a dayfirst
keyword is provided:
.. ipython:: python :suppress: data = "date,value,cat\n1/6/2000,5,a\n2/6/2000,10,b\n3/6/2000,15,c" with open('tmp.csv', 'w') as fh: fh.write(data)
.. ipython:: python print open('tmp.csv').read() read_csv('tmp.csv', parse_dates=[0]) read_csv('tmp.csv', dayfirst=True, parse_dates=[0])
For large integers that have been written with a thousands separator, you can
set the thousands
keyword to True
so that integers will be parsed
correctly:
.. ipython:: python :suppress: data = ("ID|level|category\n" "Patient1|123,000|x\n" "Patient2|23,000|y\n" "Patient3|1,234,018|z") with open('tmp.csv', 'w') as fh: fh.write(data)
By default, integers with a thousands separator will be parsed as strings
.. ipython:: python print open('tmp.csv').read() df = read_csv('tmp.csv', sep='|') df df.level.dtype
The thousands
keyword allows integers to be parsed correctly
.. ipython:: python print open('tmp.csv').read() df = read_csv('tmp.csv', sep='|', thousands=',') df df.level.dtype
.. ipython:: python :suppress: os.remove('tmp.csv')
Sometimes comments or meta data may be included in a file:
.. ipython:: python :suppress: data = ("ID,level,category\n" "Patient1,123000,x # really unpleasant\n" "Patient2,23000,y # wouldn't take his medicine\n" "Patient3,1234018,z # awesome") with open('tmp.csv', 'w') as fh: fh.write(data)
.. ipython:: python print open('tmp.csv').read()
By default, the parse includes the comments in the output:
.. ipython:: python df = read_csv('tmp.csv') df
We can suppress the comments using the comment
keyword:
.. ipython:: python df = read_csv('tmp.csv', comment='#') df
.. ipython:: python :suppress: os.remove('tmp.csv')
Using the squeeze
keyword, the parser will return output with a single column
as a Series
:
.. ipython:: python :suppress: data = ("level\n" "Patient1,123000\n" "Patient2,23000\n" "Patient3,1234018") with open('tmp.csv', 'w') as fh: fh.write(data)
.. ipython:: python print open('tmp.csv').read() output = read_csv('tmp.csv', squeeze=True) output type(output)
.. ipython:: python :suppress: os.remove('tmp.csv')
While read_csv reads delimited data, the :func:`~pandas.io.parsers.read_fwf` function works with data files that have known and fixed column widths. The function parameters to read_fwf are largely the same as read_csv with two extra parameters:
colspecs
: a list of pairs (tuples), giving the extents of the fixed-width fields of each line as half-open intervals [from, to[widths
: a list of field widths, which can be used instead ofcolspecs
if the intervals are contiguous
.. ipython:: python :suppress: f = open('bar.csv', 'w') data1 = ("id8141 360.242940 149.910199 11950.7\n" "id1594 444.953632 166.985655 11788.4\n" "id1849 364.136849 183.628767 11806.2\n" "id1230 413.836124 184.375703 11916.8\n" "id1948 502.953953 173.237159 12468.3") f.write(data1) f.close()
Consider a typical fixed-width data file:
.. ipython:: python print open('bar.csv').read()
In order to parse this file into a DataFrame, we simply need to supply the column specifications to the read_fwf function along with the file name:
.. ipython:: python #Column specifications are a list of half-intervals colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)] df = read_fwf('bar.csv', colspecs=colspecs, header=None, index_col=0) df
Note how the parser automatically picks column names X.<column number> when
header=None
argument is specified. Alternatively, you can supply just the
column widths for contiguous columns:
.. ipython:: python #Widths are a list of integers widths = [6, 14, 13, 10] df = read_fwf('bar.csv', widths=widths, header=None) df
The parser will take care of extra white spaces around the columns so it's ok to have extra separation between the columns in the file.
.. ipython:: python :suppress: os.remove('bar.csv')
.. ipython:: python :suppress: f = open('foo.csv', 'w') f.write('A,B,C\n20090101,a,1,2\n20090102,b,3,4\n20090103,c,4,5') f.close()
Consider a file with one less entry in the header than the number of data column:
.. ipython:: python print open('foo.csv').read()
In this special case, read_csv
assumes that the first column is to be used
as the index of the DataFrame:
.. ipython:: python read_csv('foo.csv')
Note that the dates weren't automatically parsed. In that case you would need to do as before:
.. ipython:: python df = read_csv('foo.csv', parse_dates=True) df.index
.. ipython:: python :suppress: os.remove('foo.csv')
Suppose you have data indexed by two columns:
.. ipython:: python print open('data/mindex_ex.csv').read()
The index_col
argument to read_csv
and read_table
can take a list of
column numbers to turn multiple columns into a MultiIndex
:
.. ipython:: python df = read_csv("data/mindex_ex.csv", index_col=[0,1]) df df.ix[1978]
read_csv
is capable of inferring delimited (not necessarily
comma-separated) files. YMMV, as pandas uses the :class:`python:csv.Sniffer`
class of the csv module.
.. ipython:: python :suppress: df = DataFrame(np.random.randn(10, 4)) df.to_csv('tmp.sv', sep='|') df.to_csv('tmp2.sv', sep=':')
.. ipython:: python print open('tmp2.sv').read() read_csv('tmp2.sv')
Suppose you wish to iterate through a (potentially very large) file lazily rather than reading the entire file into memory, such as the following:
.. ipython:: python print open('tmp.sv').read() table = read_table('tmp.sv', sep='|') table
By specifiying a chunksize
to read_csv
or read_table
, the return
value will be an iterable object of type TextParser
:
.. ipython:: python reader = read_table('tmp.sv', sep='|', chunksize=4) reader for chunk in reader: print chunk
Specifying iterator=True
will also return the TextParser
object:
.. ipython:: python reader = read_table('tmp.sv', sep='|', iterator=True) reader.get_chunk(5)
.. ipython:: python :suppress: os.remove('tmp.sv') os.remove('tmp2.sv')
The Series and DataFrame objects have an instance method to_csv
which
allows storing the contents of the object as a comma-separated-values file. The
function takes a number of arguments. Only the first is required.
path
: A string path to the file to writenanRep
: A string representation of a missing value (default '')cols
: Columns to write (default None)header
: Whether to write out the column names (default True)index
: whether to write row (index) names (default True)index_label
: Column label(s) for index column(s) if desired. If None (default), and header and index are True, then the index names are used. (A sequence should be given if the DataFrame uses MultiIndex).mode
: Python write mode, default 'w'sep
: Field delimiter for the output file (default ",")encoding
: a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3
The DataFrame object has an instance method to_string
which allows control
over the string representation of the object. All arguments are optional:
buf
default None, for example a StringIO objectcolumns
default None, which columns to writecol_space
default None, number of spaces to write between columnsna_rep
defaultNaN
, representation of NA valueformatters
default None, a dictionary (by column) of functions each of which takes a single argument and returns a formatted stringfloat_format
default None, a function which takes a single (float) argument and returns a formatted string; to be applied to floats in the DataFrame.sparsify
default True, set to False for a DataFrame with a hierarchical index to print every multiindex key at each row.index_names
default True, will print the names of the indicesindex
default True, will print the index (ie, row labels)header
default True, will print the column labelsjustify
defaultleft
, will print column headers left- or right-justified
The Series object also has a to_string
method, but with only the buf
,
na_rep
, float_format
arguments. There is also a length
argument
which, if set to True
, will additionally output the length of the Series.
DataFrame object has an instance method to_html
which renders the contents
of the DataFrame as an html table. The function arguments are as in the method
to_string
described above.
The ExcelFile
class can read an Excel 2003 file using the xlrd
Python
module and use the same parsing code as the above to convert tabular data into
a DataFrame. To use it, create the ExcelFile
object:
xls = ExcelFile('path_to_file.xls')
Then use the parse
instance method with a sheetname, then use the same
additional arguments as the parsers above:
xls.parse('Sheet1', index_col=None, na_values=['NA'])
To read sheets from an Excel 2007 file, you can pass a filename with a .xlsx
extension, in which case the openpyxl
module will be used to read the file.
It is often the case that users will insert columns to do temporary computations in Excel and you may not want to read in those columns. ExcelFile.parse takes a parse_cols keyword to allow you to specify a subset of columns to parse.
If parse_cols is an integer, then it is assumed to indicate the last column to be parsed.
xls.parse('Sheet1', parse_cols=2, index_col=None, na_values=['NA'])
If parse_cols is a list of integers, then it is assumed to be the file column indices to be parsed.
xls.parse('Sheet1', parse_cols=[0, 2, 3], index_col=None, na_values=['NA'])
To write a DataFrame object to a sheet of an Excel file, you can use the
to_excel
instance method. The arguments are largely the same as to_csv
described above, the first argument being the name of the excel file, and the
optional second argument the name of the sheet to which the DataFrame should be
written. For example:
df.to_excel('path_to_file.xlsx', sheet_name='sheet1')
Files with a .xls
extension will be written using xlwt
and those with
a .xlsx
extension will be written using openpyxl
.
The Panel class also has a to_excel
instance method,
which writes each DataFrame in the Panel to a separate sheet.
In order to write separate DataFrames to separate sheets in a single Excel file, one can use the ExcelWriter class, as in the following example:
writer = ExcelWriter('path_to_file.xlsx')
df1.to_excel(writer, sheet_name='sheet1')
df2.to_excel(writer, sheet_name='sheet2')
writer.save()
HDFStore
is a dict-like object which reads and writes pandas to the high
performance HDF5 format using the excellent PyTables library.
.. ipython:: python :suppress: :okexcept: os.remove('store.h5')
.. ipython:: python store = HDFStore('store.h5') print store
Objects can be written to the file just like adding key-value pairs to a dict:
.. ipython:: python index = date_range('1/1/2000', periods=8) s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e']) df = DataFrame(randn(8, 3), index=index, columns=['A', 'B', 'C']) wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'], major_axis=date_range('1/1/2000', periods=5), minor_axis=['A', 'B', 'C', 'D']) store['s'] = s store['df'] = df store['wp'] = wp store
In a current or later Python session, you can retrieve stored objects:
.. ipython:: python store['df']
.. ipython:: python :suppress: store.close() import os os.remove('store.h5')